Inflammasomes monitor the cytosol for microbial contamination or perturbation and, thus, are predicted to provide potent defense against infection. However, the compendium of data from murine infection models suggests that inflammasomes merely delay the course of disease, allowing the host time to mount an adaptive response. Interpretations of such results are confounded by inflammasome-evasion strategies of vertebrate-adapted pathogens. Conversely, environmental opportunistic pathogens have not evolved in the context of inflammasomes and, therefore, are less likely to evade them. Indeed, opportunistic pathogens do not normally cause disease in wild-type animals. Accordantly, the extreme virulence of two opportunistic bacterial pathogens, Burkholderia thailandensis and Chromobacterium violaceum, is fully counteracted by inflammasomes in murine models. This leads us to propose a new hypothesis: perhaps animals maintain inflammasomes over evolutionary time not to defend against vertebrate-adapted pathogens but instead to counteract infection by a plethora of undiscovered opportunistic pathogens residing in the environment.

Sensors in the innate immune system survey the extracellular/vacuolar space or the cytosol. TLRs and C-type lectin receptors survey the extracellular/vacuolar compartment. In contrast, RIG-I–like receptors, Nod-like receptors (NLRs), AIM2-like receptors (ALRs), and certain TRIM family proteins survey the cytosolic space. Among these cytosolic sensors, the canonical inflammasomes activate caspase-1. The exception to this paradigm of upstream sensors activating downstream signaling molecules is the so-called “noncanonical inflammasome” pathway, in which murine caspase-11 (and its human orthologs caspase-4 and -5) has the cytosolic sensor and effector functions built into the same protein (1, 2).

Caspase-1 activation leads to processing and secretion of the inflammatory cytokines IL-1β and IL-18, as well as to a form of programmed lytic cell death called pyroptosis. Inflammasomes detect a wide range of cytosolic contaminants. AIM2 detects cytosolic DNA (3). NLRP3 responds to diverse stimuli that seem to trigger catastrophic cellular events (3). In a relatively unique mechanism, NLRC4 is activated by an upstream helper NLR in the NAIP family that is the direct sensor for one of three bacterial proteins: T3SS rod, T3SS needle, or flagellin. These components aberrantly enter the host cytosol through T3SS, presumably while the bacteria is injecting effector proteins to alter host cell function(s) (4). NLRP1b in the mouse responds to the anthrax lethal toxin by serving as a “lure” for this pathogen protease (5). Finally, pyrin (also called TRIM20) senses perturbation of Rho GTPases by bacterial toxins (6). In contrast to these canonical inflammasomes, caspase-11/4/5 detect cytosolic LPS by direct interaction between LPS and their CARD domains (2). These noncanonical inflammasomes trigger pyroptosis but do not process IL-1β directly.

Inflammasomes are evolutionarily maintained in vertebrates (7), although the repertoire may be expanded or contracted in various species. Inflammasomes are proposed to aid in defense against a variety of infections. However, inflammasome activation can also drive septic shock, leading to death (8, 9). This would exert a selective pressure to lose inflammasomes. With this in mind, does the current published evidence support a positive selective pressure that explains the maintenance of inflammasomes over evolutionary time?

In considering the positive selective pressure to maintain inflammasomes in defense against infection, many infectious studies were performed using knockout (KO) mice, typically on the C57BL/6 background. Although inflammasome-deficient mice have increased susceptibility to many pathogens, the effect of inflammasomes on experimental survival studies is typically incremental. Salmonella enterica serovar Typhimurium (S. typhimurium) was one of the best and earliest examples. S. typhimurium replicates somewhat faster in Casp1−/−Casp11−/− mice, resulting in significantly increased burdens at any given time point postinfection; for example, at day 5 postinfection, Casp1−/−Casp11−/− mice have 10-fold higher burdens than wild-type (WT) mice (10). This translates into the WT mice surviving 2 d longer than Casp1−/−Casp11−/− mice (11); however, it is important to remember that the WT mice still succumb, and the ultimate outcome of the infection remains unchanged. Our interpretation of these results is that inflammasomes alone cannot eradicate S. typhimurium but merely slow its kinetics, which could be beneficial in that the animal may survive long enough to develop an adaptive immune response. In further support of this hypothesis, mice infected with Listeria monocytogenes that survive to days 7–8 postinfection are able to mount a CTL response that combats and clears the infection. It is well established that this CTL response eliminates L. monocytogenes (12). Therefore, slowing the course of infection could be the positive selective pressure that maintains inflammasomes over evolutionary time.

Conversely, at first glance, some infectious studies would suggest that inflammasomes have a critical role in defense. For example, we reported that Burkholderia pseudomallei is lethal in Casp1−/−Casp11−/− mice, whereas WT mice survive the infection (13). On its surface, such a result seems to have incredible power, leading to the interpretation that inflammasomes fully prevent lethal infection. However, interpretation of this result is confounded by the fact that we chose the dose specifically because it was not lethal in WT mice (i.e., we defined the dose as being sublethal). When a deeper analysis of the dose response is performed, the results lead to a more nuanced interpretation. In this regard, Fabio Re’s group (14) examined three doses of B. pseudomallei infection. They demonstrated that as few as 25 CFU resulted in 100% lethality in Casp1−/−Casp11−/− mice, whereas all of the WT mice survived, consistent with our results. However, when Re’s group increased the dose, they found that 100 CFU caused an intermediate lethality in WT mice, and 200 CFU was sufficient to cause 100% lethality in WT mice (14). Therefore, inflammasome detection of B. pseudomallei resulted in an ∼8-fold shift in the lethal infectious dose. Although this is not an insignificant degree of protection, the general conclusion could be that both WT and Casp1−/−Casp11−/− mice succumb to extremely low-dose B. pseudomallei challenge. Thus, our interpretation is that, although experiments performed at doses just under the lethal dose can appear fully penetrant, they may actually reflect a more subtle phenotype.

We next considered whether this interpretation is consistent with other published data in infectious models. In contrast to Re’s work (14), most studies only use one infectious dose. Although this limits our ability to precisely evaluate the shift in lethal dose, we can estimate the minimum change supported by the data (rubric is described in Table I legend). Because we wished to contrast various infectious models, we realized the difficulty of comparing pathogen burdens, pathology, or cytokine responses at various time points. In contrast, the lethal challenge provides the same readout (survival) for an array of pathogens, routes, and doses; the survival assay also integrates temporal effects. Therefore, we attempted to identify and collate all lethal challenge studies that were performed in inflammasome-KO mice to illustrate the relative importance of inflammasomes in defense against numerous pathogens (Table I). Unless otherwise indicated (Table I, “Notes” column), all KO mice are Casp1−/−Casp11−/− mice. It should be noted that, although many survival studies were performed with bacteria, fewer were published with viral, fungal, and parasitic infection (discussed further below) (1518). After collation of published survival studies (Table I), it was striking that most changes in lethal dose were estimated to be in the 1–5-fold range.

Table I.
Inflammasome survival studies reveal incremental inflammasome protection




Time to Death
Survival (%)



PathogenVertebrate Adapted
Dose
Route
WT
KO
WT
KO
Δ Lethal Dosea
Notes
Ref.
Bacteria           
Bacillus anthracis Yes 105 s.c. ∞ 80 h 100 >5 b  (42
 Bacillus anthracis Ames Yes 4 × 102 i.p. 3 d 3 d 50 25 >1 c  (43
 Bacillus anthracis Sterne Yes 2.5 × 107 i.p. ∞ 4 d 100 >5 c  (43
 Burkholderia cepacia No 106 i.p. ∞ ∞ 100 100   (33
 B. pseudomallei Yes 200 i.n. 4 d n.d. n.d. >8   (14
  100 i.n. 4 d 4 d 65 >8   (14
  25 i.n. ∞ 4 d 100 >8   (14
  100 i.n. ∞ 2–3 d 100 >5   (44
  100 i.n. ∞ 3.5 d 100 >5   (13
 B. thailandensis No 2 × 107 i.p. ∞ 1 d 100 >1,000,000   (29
  106 i.p. ∞ 2 d 100 >1,000,000   (29
  105 i.p. ∞ 2 d 100 >1,000,000   (29
  104 i.p. ∞ 2 d 100 >1,000,000   (29
  1000 i.p. ∞ 3 d 100 >1,000,000   (29
  100 i.p. ∞ 3 d 100 >1,000,000   (29
 C. violaceum No 106 i.p. ∞ n.d. 100 n.d. >50,000   (33
  104 i.p. ∞ 3 d 100 >50,000   (33
  100 i.p. ∞ 4 d 100 >50,000   (33
 Francisella tularensis subsp. novicida Yes 1.5 × 105 s.c. 4 d 3 d 65 >2 d  (45
  1.5 × 105 s.c. 6 d 4 d 25 >1   (46
  5 × 103 s.c. 3 d 2.5 d 75 >2   (47
 Francisella philomiragia No 106 i.p. ∞ ∞ 100 100   (33
 K. pneumoniae No 7.4 × 104 i.t. 50 h 45 h 15 >1 d  (35
  1000 i.n. 5 d 5 d 75 40 >1   (48
  104 i.n. 4 d 6 d 50 15 >1   (48
 L. monocytogenes Yes 106 i.v. 5 d 3–4 d 35–65 >2   (49
 M. tuberculosis Yes 250–350 i.n. 200 d 148 d d  (50
  250–350 i.n. 170 d 170 d   (50
  50–100 i.n. 200 d 110 d 90 >2   (51
  106 i.t. ∞ 6 d >5 d  (52
 Pseudomonas aeruginosa No 2 × 107 i.n. 36 h 40 h 20 65 >1 d  (53
  7 × 105 i.t. 3 d ∞ 10 d  (54
 S. typhimurium Yes 100 i.p. 5 d 5 d   (55
  106 Oral 9 d 6 d   (10
  108 Oral 8 d 5.5 d   (11
 S. flexneri Yes 2 × 108 i.n. 20 h 45 h 75 20 >2   (56
 S. aureus Yes 1 × 104 i.c. 20 h 18 h 60 25 >1   (57
 Streptococcus agalactiae (Group B) Yes 105 i.p. ∞ 24 h 100 40 >2   (58
 Streptococcus pneumoniae Yes 105 i.n. 3 d 2.5 d 87 55 >1   (59
 V. vulnificus No 1.5 × 104 i.p. ∞ 24 h 100 60 >1   (36
 Yersinia pestis Yes 1 × 104 i.n. 72 h 72 h   (60
 Y. pseudotuberculosis Yes 1000 i.p. 6 d 4 d   (23
  1 × 109 Oral 7 d 6 d   (61
Viruses           
Encephalomyocarditis virus Yes 2× LD50 i.p. 5 d 5 d 10 15 >1   (62
Influenza A virus Yes 6 × 104 i.n. 8 d 7 d 65 40 >1   (63
  8 × 103 i.n. 11 d 10 d 65 35 >1   (64
  10 i.n. ∞ 11 d 100 >5   (65
Vesicular stomatitis virus Yes 2 × 105 i.n. 7 d 7 d 40 20 >1   (62
West Nile virus Yes 100 s.c. 9 d 9 d 80 50 >1   (66, 67
Fungi           
 Aspergillus fumigatus No 1 × 105 i.p. 6 d 4 d 70 >2   (68
 Candida albicans Yes 105 i.v. 9 d 5 d 40 >1 d  (69
  2 × 105 i.v. 18 d 17 d 83 50 >1   (70
  5 × 106 Oral ∞ 3 d 100 60 >1 d  (71
  n.s. Oral ∞ 5 d 97 60 >1   (72
 Paracoccidioides brasiliensis No 2 × 106 i.v. 90 d 75 d 50 >2   (73
Parasites           
 Plasmodium berghei Yes 10 i.v. 9 d 10 d 40 75 >1 d  (74
 Plasmodium berghei iRBCs Yes 104 i.v. 6.5 d 6.5 d   (75
 Plasmodium berghei sporozites Yes 104 i.v. 6.5 d 6.5 d   (75
 Plasmodium chabaudi adami Yes 5 × 104 i.p. 11 d 12 d d  (76
 Plasmodium falciparum Yes 106 i.p. 6 d 6 d   (77
 Toxoplasma gondii Yes 104 i.p. 10 d 9 d 75 10 >2   (78
 Trypanosoma cruzi Yes 103 i.p. 20 d 20 d 70 10 >2   (79
  103 s.c. 22 d 28 d 80 90 >1   (80




Time to Death
Survival (%)



PathogenVertebrate Adapted
Dose
Route
WT
KO
WT
KO
Δ Lethal Dosea
Notes
Ref.
Bacteria           
Bacillus anthracis Yes 105 s.c. ∞ 80 h 100 >5 b  (42
 Bacillus anthracis Ames Yes 4 × 102 i.p. 3 d 3 d 50 25 >1 c  (43
 Bacillus anthracis Sterne Yes 2.5 × 107 i.p. ∞ 4 d 100 >5 c  (43
 Burkholderia cepacia No 106 i.p. ∞ ∞ 100 100   (33
 B. pseudomallei Yes 200 i.n. 4 d n.d. n.d. >8   (14
  100 i.n. 4 d 4 d 65 >8   (14
  25 i.n. ∞ 4 d 100 >8   (14
  100 i.n. ∞ 2–3 d 100 >5   (44
  100 i.n. ∞ 3.5 d 100 >5   (13
 B. thailandensis No 2 × 107 i.p. ∞ 1 d 100 >1,000,000   (29
  106 i.p. ∞ 2 d 100 >1,000,000   (29
  105 i.p. ∞ 2 d 100 >1,000,000   (29
  104 i.p. ∞ 2 d 100 >1,000,000   (29
  1000 i.p. ∞ 3 d 100 >1,000,000   (29
  100 i.p. ∞ 3 d 100 >1,000,000   (29
 C. violaceum No 106 i.p. ∞ n.d. 100 n.d. >50,000   (33
  104 i.p. ∞ 3 d 100 >50,000   (33
  100 i.p. ∞ 4 d 100 >50,000   (33
 Francisella tularensis subsp. novicida Yes 1.5 × 105 s.c. 4 d 3 d 65 >2 d  (45
  1.5 × 105 s.c. 6 d 4 d 25 >1   (46
  5 × 103 s.c. 3 d 2.5 d 75 >2   (47
 Francisella philomiragia No 106 i.p. ∞ ∞ 100 100   (33
 K. pneumoniae No 7.4 × 104 i.t. 50 h 45 h 15 >1 d  (35
  1000 i.n. 5 d 5 d 75 40 >1   (48
  104 i.n. 4 d 6 d 50 15 >1   (48
 L. monocytogenes Yes 106 i.v. 5 d 3–4 d 35–65 >2   (49
 M. tuberculosis Yes 250–350 i.n. 200 d 148 d d  (50
  250–350 i.n. 170 d 170 d   (50
  50–100 i.n. 200 d 110 d 90 >2   (51
  106 i.t. ∞ 6 d >5 d  (52
 Pseudomonas aeruginosa No 2 × 107 i.n. 36 h 40 h 20 65 >1 d  (53
  7 × 105 i.t. 3 d ∞ 10 d  (54
 S. typhimurium Yes 100 i.p. 5 d 5 d   (55
  106 Oral 9 d 6 d   (10
  108 Oral 8 d 5.5 d   (11
 S. flexneri Yes 2 × 108 i.n. 20 h 45 h 75 20 >2   (56
 S. aureus Yes 1 × 104 i.c. 20 h 18 h 60 25 >1   (57
 Streptococcus agalactiae (Group B) Yes 105 i.p. ∞ 24 h 100 40 >2   (58
 Streptococcus pneumoniae Yes 105 i.n. 3 d 2.5 d 87 55 >1   (59
 V. vulnificus No 1.5 × 104 i.p. ∞ 24 h 100 60 >1   (36
 Yersinia pestis Yes 1 × 104 i.n. 72 h 72 h   (60
 Y. pseudotuberculosis Yes 1000 i.p. 6 d 4 d   (23
  1 × 109 Oral 7 d 6 d   (61
Viruses           
Encephalomyocarditis virus Yes 2× LD50 i.p. 5 d 5 d 10 15 >1   (62
Influenza A virus Yes 6 × 104 i.n. 8 d 7 d 65 40 >1   (63
  8 × 103 i.n. 11 d 10 d 65 35 >1   (64
  10 i.n. ∞ 11 d 100 >5   (65
Vesicular stomatitis virus Yes 2 × 105 i.n. 7 d 7 d 40 20 >1   (62
West Nile virus Yes 100 s.c. 9 d 9 d 80 50 >1   (66, 67
Fungi           
 Aspergillus fumigatus No 1 × 105 i.p. 6 d 4 d 70 >2   (68
 Candida albicans Yes 105 i.v. 9 d 5 d 40 >1 d  (69
  2 × 105 i.v. 18 d 17 d 83 50 >1   (70
  5 × 106 Oral ∞ 3 d 100 60 >1 d  (71
  n.s. Oral ∞ 5 d 97 60 >1   (72
 Paracoccidioides brasiliensis No 2 × 106 i.v. 90 d 75 d 50 >2   (73
Parasites           
 Plasmodium berghei Yes 10 i.v. 9 d 10 d 40 75 >1 d  (74
 Plasmodium berghei iRBCs Yes 104 i.v. 6.5 d 6.5 d   (75
 Plasmodium berghei sporozites Yes 104 i.v. 6.5 d 6.5 d   (75
 Plasmodium chabaudi adami Yes 5 × 104 i.p. 11 d 12 d d  (76
 Plasmodium falciparum Yes 106 i.p. 6 d 6 d   (77
 Toxoplasma gondii Yes 104 i.p. 10 d 9 d 75 10 >2   (78
 Trypanosoma cruzi Yes 103 i.p. 20 d 20 d 70 10 >2   (79
  103 s.c. 22 d 28 d 80 90 >1   (80
a

Change in 100% lethality between WT and KO mice. Values based on Ref. 3 because difference was 8-fold between WT 100% lethality and lowest dose listed. However, because there was no dose at which Casp1−/−Casp11−/− mice did not die, the difference was listed as >8-fold. Thus, a difference in survival percentages <50% was estimated to be a >1-fold increase in the infectious dose, >50% was >2-fold, and >100% was >5-fold.

b

Mice encoding NLRP1b that could detect anthrax lethal toxin, leading to caspase-1 activation. KO mice have this sensitive NLRP1b but lack caspase-1 and caspase-11.

c

KO are transgenic mice expressing a 129S1/SvImJ(129S1)-derived lethal toxin-sensitive allele of Nlrp1b on a B6 background. WT mice are normal B6.

d

Aim2−/−, Nlrp3−/−, or Nlrc4−/− mice.

∞, WT mice that were tested but did not die from the infection during the period presented in the published literature; i.c., intracranial; i.n., intranasal; iRBC, infected RBC; i.t., intratracheal; n.d., not determined.

Therefore, the combined results of all infection survival studies in inflammasome-deficient mice support our interpretation that inflammasomes delay the course of infection but do not have a dominant role in defense. Conversely, what if inflammasomes could provide rapid and potent defense against infection? This would exert a strong selective pressure for pathogens to evolve inflammasome-evasion strategies, minimizing the usefulness of inflammasomes. The difference between these two interpretations has a profound influence on how we think about the importance of inflammasomes.

Indeed, many pathogens evade inflammasome detection. For example, S. typhimurium induces rapid and profound caspase-1 activation in vitro. However, S. typhimurium encodes two T3SSs (SPI-1 and SPI-2), of which only SPI-1 is detected by NLRC4. Therefore, upon host cell entry and during the systemic phase of infection in vivo, S. typhimurium suppresses SPI-1 expression in favor of the “silent” SPI-2 system. Further, S. typhimurium represses flagellin expression (19). The significance of these strategies in vivo cannot be understated, because S. typhimurium engineered to express flagellin or SPI-1 rod protein during systemic infection are completely attenuated in WT mice but are fully virulent in inflammasome-deficient mice (4, 20). L. monocytogenes also represses flagellin and is attenuated when engineered to persistently express it (21, 22). By virtue of being a Gram-positive bacterium, L. monocytogenes also naturally evades caspase-11, simply because it lacks LPS. In contrast, cytosol-invasive Francisella spp. have evolved to actively modify their LPS structure to evade caspase-11 detection (9). Another mechanism to evade cytosolic LPS detection by caspase-11 is by replicating in the vacuole, as is the case with numerous vacuolar pathogens, including S. typhimurium (13).

In contrast, Yersinia spp. encode the effector YopM, which is capable of inhibiting caspase-1 by directly binding to the active site. This is critically important in vivo, because Y. pseudotuberculosis yopM mutants are attenuated in WT mice but retain full virulence in Casp1−/−Casp11−/− mice (23). Similarly, Shigella flexneri encode the OspC3 T3SS effector that inhibits human caspase-4 (24), thus preventing detection of its LPS as the bacterium invades the cytosol. Direct inhibition of inflammasome components is not limited to bacteria. Indeed, poxviruses encode crmA, a serpin that can inhibit several caspases (both inflammatory and apoptotic) and was identified as a caspase-1 inhibitor before the discovery of pyroptosis (25). Further, Kaposi’s sarcoma–associated herpesvirus encodes an NLR analog (the tegument protein Orf63) that inhibits NLRP1 and NLRP3 activation of caspase-1 (26).

Another possible strategy for pathogens to cope with inflammasomes is to avoid the consequences downstream of inflammasome detection. B. pseudomallei may be an example of this strategy by resisting the neutrophil killing (27) that occurs after the bacteria are ejected into the extracellular space by pyroptosis (4). Staphylococcus aureus may be another example, because they are highly resistant to killing by neutrophils and have numerous toxins that inhibit neutrophil chemotaxis (28).

These pathogens are striking examples that demonstrate the importance of evading inflammasome detection (Fig. 1). They show that inflammasomes could provide extremely potent defense against infection in vivo but fail to do so because many pathogens minimize detection.

FIGURE 1.

Opportunistic microbes are readily detected by inflammasomes, whereas vertebrate-adapted pathogens evade detection. Numerous pathogens evade inflammasome detection by repression or modification of ligands (yellow lines) or by direct inhibition with specific virulence factors (red lines). Concomitantly, the beneficial effect of inflammasomes against such pathogens is typically blunted in vivo (see Table I). In contrast, two environmental bacteria (C. violaceum and B. thailandensis) are potently detected by inflammasomes (green arrows), and inflammasome defense in vivo is accordingly robust. Thus, we hypothesize that inflammasomes defend against environmental pathogens with specific virulence traits and may have limited usefulness against vertebrate-adapted bacterial pathogens, which have evolved to evade and/or inhibit them.

FIGURE 1.

Opportunistic microbes are readily detected by inflammasomes, whereas vertebrate-adapted pathogens evade detection. Numerous pathogens evade inflammasome detection by repression or modification of ligands (yellow lines) or by direct inhibition with specific virulence factors (red lines). Concomitantly, the beneficial effect of inflammasomes against such pathogens is typically blunted in vivo (see Table I). In contrast, two environmental bacteria (C. violaceum and B. thailandensis) are potently detected by inflammasomes (green arrows), and inflammasome defense in vivo is accordingly robust. Thus, we hypothesize that inflammasomes defend against environmental pathogens with specific virulence traits and may have limited usefulness against vertebrate-adapted bacterial pathogens, which have evolved to evade and/or inhibit them.

Close modal

Vertebrate-adapted pathogens have evolved in the context of selective pressure exerted by the host immune system and have accordingly potent virulence traits. In contrast, for opportunistic pathogens for which humans are dead-end accidental hosts, there is no selective pressure to evade the human immune response. However, such microbes could also encode an impressive array of virulence factors, which can enable extreme pathogenicity. For example, Burkholderia thailandensis encodes cytosol-invasive T3SS but almost never causes infection in people (29). As such, it has been used as an experimental surrogate for its close relative B. pseudomallei (a BSL3 pathogen); in this capacity, our laboratory studied B. thailandensis infection in vivo in mice.

Shockingly, during systemic infection with B. thailandensis there is a 1,000,000-fold change between Casp1−/−Casp11−/− and WT mice (Table I). The resistance conferred by inflammasomes is extremely efficient; WT mice fully sterilize even high-dose B. thailandensis infection (2 × 107 CFU) within just 1 d (29). Clearly, inflammasomes can provide potent protection when presented with this specific pathogen. The strength of this phenotype was extremely surprising, rivaled only by the effect of inflammasomes upon pathogens that were engineered to remove inflammasome-evasion strategies. This made us re-evaluate the nature of B. thailandensis; we had simplistically considered it to be a surrogate for B. pseudomallei. However, it is important to keep in mind that B. thailandensis occupies a specific environmental niche as a soil microbe, where its T3SS is presumably used to invade the cytosol of an unknown eukaryotic host (30).

Is B. thailandensis an isolated unique case? With these thoughts in mind, we began to screen for other environmental opportunistic pathogens that primarily cause disease in immunocompromised individuals, hypothesizing that healthy individuals would competently clear them via the activity of inflammasomes.

In this endeavor, we discovered another ubiquitous environmental opportunistic pathogen against which inflammasomes play a similarly striking role, conferring a >50,000-fold shift in the lethal dose (Table I). Chromobacterium violaceum is a Gram-negative bacterium that lives in the sediment of freshwater rivers and lakes. Although C. violaceum encodes two T3SSs that are similar to Salmonella SPI-1 and SPI-2 and can be detected by NLRC4 (31), it virtually never causes disease in immunocompetent people (32).

A confounding factor in the identification of these examples is that there may be redundant host defense pathways that independently confer sterilizing innate immunity. Indeed, it is quite surprising that defense against C. violaceum and B. thailandensis is monoallellic. However, our studies with C. violaceum revealed that pyroptosis is partially redundant with NK cell cytotoxicity, although both are dependent on caspase-1 activation (33). Further, if an opportunistic pathogen does not kill the host within 1 wk, the adaptive-immune response could compensate for the loss of inflammasomes.

As evidenced by the vertebrate-adapted column in Table I, several opportunistic pathogens have been examined in Casp1−/−Casp11−/− mice, yet none demonstrated such large changes in the lethal dose as seen with C. violaceum and B. thailandensis. C. violaceum encodes two T3SSs (34) and, concomitantly, defense is conferred by NLRC4 in vivo (33). B. thailandensis invades the host cytosol, and its LPS is detected by caspase-11 (13, 29), which confers defense in vivo. In both cases, it is the specific virulence traits that are detected by the inflammasomes. The evasion strategies used by vertebrate-adapted pathogens are likely not present in these environmental bacteria, because they did not evolve in the presence of potential inflammasome detection. For example, Klebsiella pneumoniae and Vibrio vulnificus are opportunistic pathogens that typically cause disease in immunocompromised patients (35, 36), which fits our model that healthy individuals are protected by inflammasomes. However, neither has a strong in vivo phenotype in inflammasome-deficient mice (Table I). Additionally, neither encodes a T3SS or is cytosol invasive, as is the case for B. thailandensis and C. violaceum. Thus, they may lack inflammasome agonists.

The predominance of evidence suggests that vertebrate-adapted pathogens evolved to minimize the effectiveness of inflammasomes; in vivo phenotypes are typically incremental, and evasion strategies are prevalent. Why, then, are inflammasomes maintained in the human genome? The extreme virulence of B. thailandensis and C. violaceum in inflammasome-deficient mice leads us to propose a new hypothesis regarding the importance of inflammasomes in the immune system. We hypothesize that inflammasomes defend against ubiquitous environmental microbes with specific virulence traits. Further, we propose that the inflammasome-directed defense is so efficient that the infection never progresses to clinically apparent symptoms. It is interesting to note that inflammasome-deficient patients have not been identified. We speculate that a survey of apparently immunocompetent people with susceptibility to specific opportunistic pathogens, such as C. violaceum, could identify patients with inflammasome mutations. For example, in a case series of 106 C. violaceum infections, only 15% were directly attributed to an immunocompromising comorbidity (such as chronic granulomatous disease) (32).

There are several caveats that temper interpretation of the extreme virulence of B. thailandensis and C. violaceum in Casp1−/−Casp11−/− mice. One consideration is that Casp1−/−Casp11−/− animals are inbred and typically maintained on a C57BL/6 background that naturally lacks NRAMP1 (37). Mice lacking NRAMP1 have increased susceptibility to numerous intracellular pathogens, including S. typhimurium, L. monocytogenes, and Mycobacterium tuberculosis. This caveat has not gone unnoticed. In 2006, Lara-Tejero et al. (10) investigated the roles of inflammasomes in Nramp1-sufficient mice during S. typhimurium infection. However, regardless of the presence of a functional Nramp1 gene, Casp1−/−Casp11−/− mice still showed an incremental susceptibility to S. typhimurium infection in comparison with their WT counterparts.

Further, 129/SvEv mice are Nramp1 sufficient but carry a spontaneous mutation in caspase-11 (38). Aachoui et al. (29) infected 129/SvEv (Casp11−/−Nramp1+/+) mice and found that they have extreme susceptibility to B. thailandensis that is comparable to C57BL/6 Casp11−/− (Nramp1−/−) mice, whereas BALB/c (Casp11+/+Nramp1−/−) mice remained resistant. Thus, the potency of inflammasome defense against this environmental bacterium was not significantly altered by the presence or absence of Nramp1.

In addition to the influence of Nramp1 on different inbred mouse strains, there is the fact that mice are not men; although this may seem to be an obvious caveat, it is one worth expanding upon. There are species barriers that can influence the virulence of pathogens. There are several examples of bacteria (Shigella spp., Salmonella typhi) that fail to establish mouse infections despite infectivity in humans. However, there are far more examples of viruses that have human-specific strains that do not infect mice: human CMV, HIV, hepatitis B virus, hepatitis C virus, EBV, measles, mumps, and many more (39). Therefore, there could be more stringent noninflammasome barriers restricting interspecies dissemination of viruses in comparison with bacteria. Therefore, our hypothesis that inflammasomes defend against environmental microbes might not hold true for viruses.

Certain inflammasomes, but not all, are conserved between mice and humans. NLRC4, NLRP3, caspase-1, and AIM2 are highly conserved over evolutionary time from sharks to humans (based on searches of the Basic Local Alignment Search Tool by V.I. Maltez and E.A. Miao of inflammasome components). Yet, despite the high conservation of the ALR family member AIM2, there are 12 additional ALRs in mice but only 3 more in humans, suggesting active evolution of this gene family (40). Because AIM2/ALRs are often attributed to recognizing viral infections, the diversity within this family over evolutionary time could argue against the hypothesis that they defend against specific environmental pathogens. Similarly, mice encode three NLRP1 genes that are highly polymorphic among inbred mouse strains, and there is only one human NLRP1 (5). This again suggests active evolution of the NLRP1 locus. Thus, our hypothesis might only hold true for certain highly conserved inflammasomes and not for the more divergent or polymorphic inflammasomes.

If vertebrate-adapted pathogens minimize the effectiveness of inflammasomes, why should we continue to study them? First, even suboptimal inflammasome responses may have clinically beneficial effects during infection by vertebrate-adapted pathogens. Second, inflammasomes seem to be important drivers of the pathology of severe sepsis and septic shock (8, 9, 41). There are no immunologically directed therapies for sepsis; supportive treatments are useful but, nevertheless, 28% of patients with sepsis die. Study of the downstream effect(s) of aberrant inflammasome activation could aid in the development of new directed treatments.

If vertebrate-adapted pathogens minimize the effectiveness of inflammasomes, how should we best study them? Opportunistic pathogens have the potential to lead us to novel insights and to reveal therapeutic approaches. Our work with C. violaceum demonstrates the reality of this potential: we discovered a novel link between inflammasome activation and in vivo perforin-mediated defense that was then applicable to L. monocytogenes infection as a cytokine therapy (33). With the rise in antibiotic-resistant microbes, there is a pressing need for new immunotherapeutic approaches to treat infection.

We apologize if we missed any publications in our table. We attempted to be as thorough as possible and only cited studies with live infections and both WT and inflammasome-deficient mice.

This work was supported by National Institutes of Health Grants AI119073, AI097518, and AI097518-02S.

Abbreviations used in this article:

ALR

AIM2-like receptor

KO

knockout

NLR

Nod-like receptor

WT

wild-type.

1
Jin
C.
,
Henao-Mejia
J.
,
Flavell
R. A.
.
2013
.
Innate immune receptors: key regulators of metabolic disease progression.
Cell Metab.
17
:
873
882
.
2
Shi
J.
,
Zhao
Y.
,
Wang
Y.
,
Gao
W.
,
Ding
J.
,
Li
P.
,
Hu
L.
,
Shao
F.
.
2014
.
Inflammatory caspases are innate immune receptors for intracellular LPS.
Nature
514
:
187
192
.
3
Wen
H.
,
Miao
E. A.
,
Ting
J. P.
.
2013
.
Mechanisms of NOD-like receptor-associated inflammasome activation.
Immunity
39
:
432
441
.
4
Miao
E. A.
,
Leaf
I. A.
,
Treuting
P. M.
,
Mao
D. P.
,
Dors
M.
,
Sarkar
A.
,
Warren
S. E.
,
Wewers
M. D.
,
Aderem
A.
.
2010
.
Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria.
Nat. Immunol.
11
:
1136
1142
.
5
von Moltke, J., J. S. Ayres, E. M. Kofoed, J. Chavarría-Smith, and R. E. Vance. 2013. Recognition of bacteria by Inflammasomes. Annu. Rev. Immunol. 31: 73–106
.
6
Xu
H.
,
Yang
J.
,
Gao
W.
,
Li
L.
,
Li
P.
,
Zhang
L.
,
Gong
Y.-N.
,
Peng
X.
,
Xi
J. J.
,
Chen
S.
, et al
.
2014
.
Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome.
Nature
513
:
237
241
.
7
Sakamaki
K.
,
Satou
Y.
.
2009
.
Caspases: evolutionary aspects of their functions in vertebrates.
J. Fish Biol.
74
:
727
753
.
8
Kayagaki, N., M. T. Wong, I. B. Stowe, S. R. Ramani, L. C. Gonzalez, S. Akashi-Takamura, K. Miyake, J. Zhang, W. P. Lee, A. Muszynski, et al. 2013. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341: 1246–1249
.
9
Hagar
J. A.
,
Powell
D. A.
,
Aachoui
Y.
,
Ernst
R. K.
,
Miao
E. A.
.
2013
.
Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock.
Science
341
:
1250
1253
.
10
Lara-Tejero
M.
,
Sutterwala
F. S.
,
Ogura
Y.
,
Grant
E. P.
,
Bertin
J.
,
Coyle
A. J.
,
Flavell
R. A.
,
Galán
J. E.
.
2006
.
Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis.
J. Exp. Med.
203
:
1407
1412
.
11
Raupach
B.
,
Peuschel
S. K.
,
Monack
D. M.
,
Zychlinsky
A.
.
2006
.
Caspase-1-mediated activation of interleukin-1beta (IL-1beta) and IL-18 contributes to innate immune defenses against Salmonella enterica serovar Typhimurium infection.
Infect. Immun.
74
:
4922
4926
.
12
Harty
J. T.
,
Bevan
M. J.
.
1992
.
CD8+ T cells specific for a single nonamer epitope of Listeria monocytogenes are protective in vivo.
J. Exp. Med.
175
:
1531
1538
.
13
Aachoui
Y.
,
Leaf
I. A.
,
Hagar
J. A.
,
Fontana
M. F.
,
Campos
C. G.
,
Zak
D. E.
,
Tan
M. H.
,
Cotter
P. A.
,
Vance
R. E.
,
Aderem
A.
,
Miao
E. A.
.
2013
.
Caspase-11 protects against bacteria that escape the vacuole.
Science
339
:
975
978
.
14
Ceballos-Olvera
I.
,
Sahoo
M.
,
Miller
M. A.
,
Del Barrio
L.
,
Re
F.
.
2011
.
Inflammasome-dependent pyroptosis and IL-18 protect against Burkholderia pseudomallei lung infection while IL-1β is deleterious.
PLoS Pathog.
7
:
e1002452
.
15
Chen
I.-Y.
,
Ichinohe
T.
.
2015
.
Response of host inflammasomes to viral infection.
Trends Microbiol.
23
:
55
63
.
16
Lupfer
C.
,
Malik
A.
,
Kanneganti
T.-D.
.
2015
.
Inflammasome control of viral infection.
Curr. Opin. Virol.
12
:
38
46
.
17
Zamboni
D. S.
,
Lima-Junior
D. S.
.
2015
.
Inflammasomes in host response to protozoan parasites.
Immunol. Rev.
265
:
156
171
.
18
Tavares
A. H.
,
Bürgel
P. H.
,
Bocca
A. L.
.
2015
.
Turning up the heat: inflammasome activation by fungal pathogens.
PLoS Pathog.
11
:
e1004948
.
19
Miao
E. A.
,
Alpuche-Aranda
C. M.
,
Dors
M.
,
Clark
A. E.
,
Bader
M. W.
,
Miller
S. I.
,
Aderem
A.
.
2006
.
Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf.
Nat. Immunol.
7
:
569
575
.
20
Miao
E. A.
,
Mao
D. P.
,
Yudkovsky
N.
,
Bonneau
R.
,
Lorang
C. G.
,
Warren
S. E.
,
Leaf
I. A.
,
Aderem
A.
.
2010
.
Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome.
Proc. Natl. Acad. Sci. USA
107
:
3076
3080
.
21
Sauer
J.-D.
,
Pereyre
S.
,
Archer
K. A.
,
Burke
T. P.
,
Hanson
B.
,
Lauer
P.
,
Portnoy
D. A.
.
2011
.
Listeria monocytogenes engineered to activate the Nlrc4 inflammasome are severely attenuated and are poor inducers of protective immunity.
Proc. Natl. Acad. Sci. USA
108
:
12419
12424
.
22
Warren
S. E.
,
Duong
H.
,
Mao
D. P.
,
Armstrong
A.
,
Rajan
J.
,
Miao
E. A.
,
Aderem
A.
.
2011
.
Generation of a Listeria vaccine strain by enhanced caspase-1 activation.
Eur. J. Immunol.
41
:
1934
1940
.
23
LaRock
C. N.
,
Cookson
B. T.
.
2012
.
The Yersinia virulence effector YopM binds caspase-1 to arrest inflammasome assembly and processing.
Cell Host Microbe
12
:
799
805
.
24
Kobayashi
T.
,
Ogawa
M.
,
Sanada
T.
,
Mimuro
H.
,
Kim
M.
,
Ashida
H.
,
Akakura
R.
,
Yoshida
M.
,
Kawalec
M.
,
Reichhart
J.-M.
, et al
.
2013
.
The Shigella OspC3 effector inhibits caspase-4, antagonizes inflammatory cell death, and promotes epithelial infection.
Cell Host Microbe
13
:
570
583
.
25
Turner
S.
,
Kenshole
B.
,
Ruby
J.
.
1999
.
Viral modulation of the host response via crmA/SPI-2 expression.
Immunol. Cell Biol.
77
:
236
241
.
26
Gregory
S. M.
,
Davis
B. K.
,
West
J. A.
,
Taxman
D. J.
,
Matsuzawa
S.
,
Reed
J. C.
,
Ting
J. P.
,
Damania
B.
.
2011
.
Discovery of a viral NLR homolog that inhibits the inflammasome.
Science
331
:
330
334
.
27
Riyapa
D.
,
Buddhisa
S.
,
Korbsrisate
S.
,
Cuccui
J.
,
Wren
B. W.
,
Stevens
M. P.
,
Ato
M.
,
Lertmemongkolchai
G.
.
2012
.
Neutrophil extracellular traps exhibit antibacterial activity against Burkholderia pseudomallei and are influenced by bacterial and host factors.
Infect. Immun.
80
:
3921
3929
.
28
Spaan
A. N.
,
Surewaard
B. G.
,
Nijland
R.
,
van Strijp
J. A.
.
2013
.
Neutrophils versus Staphylococcus aureus: a biological tug of war.
Annu. Rev. Microbiol.
67
:
629
650
.
29
Aachoui
Y.
,
Kajiwara
Y.
,
Leaf
I. A.
,
Mao
D.
,
Ting
J. P. Y.
,
Coers
J.
,
Aderem
A.
,
Buxbaum
J. D.
,
Miao
E. A.
.
2015
.
Canonical inflammasomes drive IFN-γ to prime caspase-11 in defense against a cytosol-invasive bacterium.
Cell Host Microbe
18
:
320
332
.
30
Wiersinga
W. J.
,
Currie
B. J.
,
Peacock
S. J.
.
2012
.
Melioidosis.
N. Engl. J. Med.
367
:
1035
1044
.
31
Zhao
Y.
,
Yang
J.
,
Shi
J.
,
Gong
Y.-N.
,
Lu
Q.
,
Xu
H.
,
Liu
L.
,
Shao
F.
.
2011
.
The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus.
Nature
477
:
596
600
.
32
Yang
C.-H.
,
Li
Y.-H.
.
2011
.
Chromobacterium violaceum infection: a clinical review of an important but neglected infection.
J. Chin. Med. Assoc.
74
:
435
441
.
33
Maltez
V. I.
,
Tubbs
A. L.
,
Cook
K. D.
,
Aachoui
Y.
,
Falcone
E. L.
,
Holland
S. M.
,
Whitmire
J. K.
,
Miao
E. A.
.
2015
.
Inflammasomes coordinate pyroptosis and natural killer cell cytotoxicity to clear infection by a ubiquitous environmental bacterium.
Immunity
43
:
987
997
.
34
Brito
C. F.
,
Carvalho
C. B.
,
Santos
F.
,
Gazzinelli
R. T.
,
Oliveira
S. C.
,
Azevedo
V.
,
Teixeira
S. M.
.
2004
.
Chromobacterium violaceum genome: molecular mechanisms associated with pathogenicity.
Genet. Mol. Res.
3
:
148
161
.
35
Willingham
S. B.
,
Allen
I. C.
,
Bergstralh
D. T.
,
Brickey
W. J.
,
Huang
M. T.
,
Taxman
D. J.
,
Duncan
J. A.
,
Ting
J. P.
.
2009
.
NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways.
J. Immunol.
183
:
2008
2015
.
36
Toma
C.
,
Higa
N.
,
Koizumi
Y.
,
Nakasone
N.
,
Ogura
Y.
,
McCoy
A. J.
,
Franchi
L.
,
Uematsu
S.
,
Sagara
J.
,
Taniguchi
S.
, et al
.
2010
.
Pathogenic Vibrio activate NLRP3 inflammasome via cytotoxins and TLR/nucleotide-binding oligomerization domain-mediated NF-kappa B signaling.
J. Immunol.
184
:
5287
5297
.
37
Sellers
R. S.
,
Clifford
C. B.
,
Treuting
P. M.
,
Brayton
C.
.
2012
.
Immunological variation between inbred laboratory mouse strains: points to consider in phenotyping genetically immunomodified mice.
Vet. Pathol.
49
:
32
43
.
38
Kayagaki
N.
,
Warming
S.
,
Lamkanfi
M.
,
Vande Walle
L.
,
Louie
S.
,
Dong
J.
,
Newton
K.
,
Qu
Y.
,
Liu
J.
,
Heldens
S.
, et al
.
2011
.
Non-canonical inflammasome activation targets caspase-11.
Nature
479
:
117
121
.
39
Artimo
P.
,
Jonnalagedda
M.
,
Arnold
K.
,
Baratin
D.
,
Csardi
G.
,
de Castro
E.
,
Duvaud
S.
,
Flegel
V.
,
Fortier
A.
,
Gasteiger
E.
, et al
.
2012
.
ExPASy: SIB bioinformatics resource portal.
Nucleic Acids Res.
40
:
W597-603
.
40
Brunette
R. L.
,
Young
J. M.
,
Whitley
D. G.
,
Brodsky
I. E.
,
Malik
H. S.
,
Stetson
D. B.
.
2012
.
Extensive evolutionary and functional diversity among mammalian AIM2-like receptors.
J. Exp. Med.
209
:
1969
1983
.
41
von Moltke, J., N. J. Trinidad, M. Moayeri, A. F. Kintzer, S. B. Wang, N. van Rooijen, C. R. Brown, B. A. Krantz, S. H. Leppla, K. Gronert, and R. E. Vance. 2012. Rapid induction of inflammatory lipid mediators by the inflammasome in vivo. Nature 490: 107–111
.
42
Moayeri
M.
,
Crown
D.
,
Newman
Z. L.
,
Okugawa
S.
,
Eckhaus
M.
,
Cataisson
C.
,
Liu
S.
,
Sastalla
I.
,
Leppla
S. H.
.
2010
.
Inflammasome sensor Nlrp1b-dependent resistance to anthrax is mediated by caspase-1, IL-1 signaling and neutrophil recruitment.
PLoS Pathog.
6
:
e1001222
.
43
Terra
J. K.
,
Cote
C. K.
,
France
B.
,
Jenkins
A. L.
,
Bozue
J. A.
,
Welkos
S. L.
,
LeVine
S. M.
,
Bradley
K. A.
.
2010
.
Cutting edge: resistance to Bacillus anthracis infection mediated by a lethal toxin sensitive allele of Nalp1b/Nlrp1b.
J. Immunol.
184
:
17
20
.
44
Breitbach
K.
,
Sun
G. W.
,
Köhler
J.
,
Eske
K.
,
Wongprompitak
P.
,
Tan
G.
,
Liu
Y.
,
Gan
Y. H.
,
Steinmetz
I.
.
2009
.
Caspase-1 mediates resistance in murine melioidosis.
Infect. Immun.
77
:
1589
1595
.
45
Fernandes-Alnemri
T.
,
Yu
J.-W.
,
Juliana
C.
,
Solorzano
L.
,
Kang
S.
,
Wu
J.
,
Datta
P.
,
McCormick
M.
,
Huang
L.
,
McDermott
E.
, et al
.
2010
.
The AIM2 inflammasome is critical for innate immunity to Francisella tularensis.
Nat. Immunol.
11
:
385
393
.
46
Mariathasan
S.
,
Weiss
D. S.
,
Dixit
V. M.
,
Monack
D. M.
.
2005
.
Innate immunity against Francisella tularensis is dependent on the ASC/caspase-1 axis.
J. Exp. Med.
202
:
1043
1049
.
47
Meunier
E.
,
Wallet
P.
,
Dreier
R. F.
,
Costanzo
S.
,
Anton
L.
,
Rühl
S.
,
Dussurgey
S.
,
Dick
M. S.
,
Kistner
A.
,
Rigard
M.
, et al
.
2015
.
Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida.
Nat. Immunol.
16
:
476
484
.
48
Cai
S.
,
Batra
S.
,
Wakamatsu
N.
,
Pacher
P.
,
Jeyaseelan
S.
.
2012
.
NLRC4 inflammasome-mediated production of IL-1β modulates mucosal immunity in the lung against gram-negative bacterial infection.
J. Immunol.
188
:
5623
5635
.
49
Tsuji
N. M.
,
Tsutsui
H.
,
Seki
E.
,
Kuida
K.
,
Okamura
H.
,
Nakanishi
K.
,
Flavell
R. A.
.
2004
.
Roles of caspase-1 in Listeria infection in mice.
Int. Immunol.
16
:
335
343
.
50
McElvania Tekippe
E.
,
Allen
I. C.
,
Hulseberg
P. D.
,
Sullivan
J. T.
,
McCann
J. R.
,
Sandor
M.
,
Braunstein
M.
,
Ting
J. P.
.
2010
.
Granuloma formation and host defense in chronic Mycobacterium tuberculosis infection requires PYCARD/ASC but not NLRP3 or caspase-1.
PLoS One
5
:
e12320
.
51
Mayer-Barber
K. D.
,
Barber
D. L.
,
Shenderov
K.
,
White
S. D.
,
Wilson
M. S.
,
Cheever
A.
,
Kugler
D.
,
Hieny
S.
,
Caspar
P.
,
Núñez
G.
, et al
.
2010
.
Caspase-1 independent IL-1beta production is critical for host resistance to Mycobacterium tuberculosis and does not require TLR signaling in vivo.
J. Immunol.
184
:
3326
3330
.
52
Saiga
H.
,
Kitada
S.
,
Shimada
Y.
,
Kamiyama
N.
,
Okuyama
M.
,
Makino
M.
,
Yamamoto
M.
,
Takeda
K.
.
2012
.
Critical role of AIM2 in Mycobacterium tuberculosis infection.
Int. Immunol.
24
:
637
644
.
53
Faure
E.
,
Mear
J.-B.
,
Faure
K.
,
Normand
S.
,
Couturier-Maillard
A.
,
Grandjean
T.
,
Balloy
V.
,
Ryffel
B.
,
Dessein
R.
,
Chignard
M.
, et al
.
2014
.
Pseudomonas aeruginosa type-3 secretion system dampens host defense by exploiting the NLRC4-coupled inflammasome.
Am. J. Respir. Crit. Care Med.
189
:
799
811
.
54
Tolle
L.
,
Yu
F.-S.
,
Kovach
M. A.
,
Ballinger
M. N.
,
Newstead
M. W.
,
Zeng
X.
,
Núñez
G.
,
Standiford
T. J.
.
2015
.
Redundant and cooperative interactions between TLR5 and NLRC4 in protective lung mucosal immunity against Pseudomonas aeruginosa.
J. Innate Immun.
7
:
177
186
.
55
Monack
D. M.
,
Hersh
D.
,
Ghori
N.
,
Bouley
D.
,
Zychlinsky
A.
,
Falkow
S.
.
2000
.
Salmonella exploits caspase-1 to colonize Peyer’s patches in a murine typhoid model.
J. Exp. Med.
192
:
249
258
.
56
Sansonetti
P. J.
,
Phalipon
A.
,
Arondel
J.
,
Thirumalai
K.
,
Banerjee
S.
,
Akira
S.
,
Takeda
K.
,
Zychlinsky
A.
.
2000
.
Caspase-1 activation of IL-1beta and IL-18 are essential for Shigella flexneri-induced inflammation.
Immunity
12
:
581
590
.
57
Hanamsagar
R.
,
Aldrich
A.
,
Kielian
T.
.
2014
.
Critical role for the AIM2 inflammasome during acute CNS bacterial infection.
J. Neurochem.
129
:
704
711
.
58
Costa
A.
,
Gupta
R.
,
Signorino
G.
,
Malara
A.
,
Cardile
F.
,
Biondo
C.
,
Midiri
A.
,
Galbo
R.
,
Trieu-Cuot
P.
,
Papasergi
S.
, et al
.
2012
.
Activation of the NLRP3 inflammasome by group B streptococci.
J. Immunol.
188
:
1953
1960
.
59
Albiger
B.
,
Dahlberg
S.
,
Sandgren
A.
,
Wartha
F.
,
Beiter
K.
,
Katsuragi
H.
,
Akira
S.
,
Normark
S.
,
Henriques-Normark
B.
.
2007
.
Toll-like receptor 9 acts at an early stage in host defence against pneumococcal infection.
Cell. Microbiol.
9
:
633
644
.
60
Sivaraman
V.
,
Pechous
R. D.
,
Stasulli
N. M.
,
Miao
E. A.
,
Goldman
W. E.
.
2015
.
Yersinia pestis activates both IL-1β and IL-1 receptor antagonist to modulate lung inflammation during pneumonic plague.
PLoS Pathog.
11
:
e1004688
.
61
Zheng
Y.
,
Lilo
S.
,
Mena
P.
,
Bliska
J. B.
.
2012
.
YopJ-induced caspase-1 activation in Yersinia-infected macrophages: independent of apoptosis, linked to necrosis, dispensable for innate host defense.
PLoS One
7
:
e36019
.
62
Rajan
J. V.
,
Rodriguez
D.
,
Miao
E. A.
,
Aderem
A.
.
2011
.
The NLRP3 inflammasome detects encephalomyocarditis virus and vesicular stomatitis virus infection.
J. Virol.
85
:
4167
4172
.
63
Allen
I. C.
,
Scull
M. A.
,
Moore
C. B.
,
Holl
E. K.
,
McElvania-TeKippe
E.
,
Taxman
D. J.
,
Guthrie
E. H.
,
Pickles
R. J.
,
Ting
J. P.
.
2009
.
The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA.
Immunity
30
:
556
565
.
64
Thomas
P. G.
,
Dash
P.
,
Aldridge
J. R.
 Jr.
,
Ellebedy
A. H.
,
Reynolds
C.
,
Funk
A. J.
,
Martin
W. J.
,
Lamkanfi
M.
,
Webby
R. J.
,
Boyd
K. L.
, et al
.
2009
.
The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1.
Immunity
30
:
566
575
.
65
Ichinohe
T.
,
Lee
H. K.
,
Ogura
Y.
,
Flavell
R.
,
Iwasaki
A.
.
2009
.
Inflammasome recognition of influenza virus is essential for adaptive immune responses.
J. Exp. Med.
206
:
79
87
.
66
Ramos
H. J.
,
Lanteri
M. C.
,
Blahnik
G.
,
Negash
A.
,
Suthar
M. S.
,
Brassil
M. M.
,
Sodhi
K.
,
Treuting
P. M.
,
Busch
M. P.
,
Norris
P. J.
,
Gale
M.
 Jr.
2012
.
IL-1β signaling promotes CNS-intrinsic immune control of West Nile virus infection.
PLoS Pathog.
8
:
e1003039
.
67
Kumar
M.
,
Roe
K.
,
Orillo
B.
,
Muruve
D. A.
,
Nerurkar
V. R.
,
Gale
M.
 Jr.
,
Verma
S.
.
2013
.
Inflammasome adaptor protein Apoptosis-associated speck-like protein containing CARD (ASC) is critical for the immune response and survival in West Nile virus encephalitis.
J. Virol.
87
:
3655
3667
.
68
Karki
R.
,
Man
S. M.
,
Malireddi
R. K.
,
Gurung
P.
,
Vogel
P.
,
Lamkanfi
M.
,
Kanneganti
T.-D.
.
2015
.
Concerted activation of the AIM2 and NLRP3 inflammasomes orchestrates host protection against Aspergillus infection.
Cell Host Microbe
17
:
357
368
.
69
Gross
O.
,
Poeck
H.
,
Bscheider
M.
,
Dostert
C.
,
Hannesschläger
N.
,
Endres
S.
,
Hartmann
G.
,
Tardivel
A.
,
Schweighoffer
E.
,
Tybulewicz
V.
, et al
.
2009
.
Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence.
Nature
459
:
433
436
.
70
van de Veerdonk
F. L.
,
Joosten
L. A.
,
Shaw
P. J.
,
Smeekens
S. P.
,
Malireddi
R. K.
,
van der Meer
J. W.
,
Kullberg
B.-J.
,
Netea
M. G.
,
Kanneganti
T.-D.
.
2011
.
The inflammasome drives protective Th1 and Th17 cellular responses in disseminated candidiasis.
Eur. J. Immunol.
41
:
2260
2268
.
71
Tomalka
J.
,
Ganesan
S.
,
Azodi
E.
,
Patel
K.
,
Majmudar
P.
,
Hall
B. A.
,
Fitzgerald
K. A.
,
Hise
A. G.
.
2011
.
A novel role for the NLRC4 inflammasome in mucosal defenses against the fungal pathogen Candida albicans.
PLoS Pathog.
7
:
e1002379
.
72
Hise
A. G.
,
Tomalka
J.
,
Ganesan
S.
,
Patel
K.
,
Hall
B. A.
,
Brown
G. D.
,
Fitzgerald
K. A.
.
2009
.
An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans.
Cell Host Microbe
5
:
487
497
.
73
Ketelut-Carneiro, N., G. K. Silva, F. A. Rocha, C. M. Milanezi, F. F. Cavalcanti-Neto, D. S. Zamboni, and J. S. Silva. 2015. IL-18 triggered by the Nlrp3 inflammasome induces host innate resistance in a pulmonary model of fungal infection. J. Immunol. 194: 4507–4517
.
74
Dostert
C.
,
Guarda
G.
,
Romero
J. F.
,
Menu
P.
,
Gross
O.
,
Tardivel
A.
,
Suva
M.-L.
,
Stehle
J.-C.
,
Kopf
M.
,
Stamenkovic
I.
, et al
.
2009
.
Malarial hemozoin is a Nalp3 inflammasome activating danger signal.
PLoS One
4
:
e6510
.
75
Kordes
M.
,
Matuschewski
K.
,
Hafalla
J. C.
.
2011
.
Caspase-1 activation of interleukin-1β (IL-1β) and IL-18 is dispensable for induction of experimental cerebral malaria.
Infect. Immun.
79
:
3633
3641
.
76
Shio
M. T.
,
Eisenbarth
S. C.
,
Savaria
M.
,
Vinet
A. F.
,
Bellemare
M.-J.
,
Harder
K. W.
,
Sutterwala
F. S.
,
Bohle
D. S.
,
Descoteaux
A.
,
Flavell
R. A.
,
Olivier
M.
.
2009
.
Malarial hemozoin activates the NLRP3 inflammasome through Lyn and Syk kinases.
PLoS Pathog.
5
:
e1000559
.
77
Reimer
T.
,
Shaw
M. H.
,
Franchi
L.
,
Coban
C.
,
Ishii
K. J.
,
Akira
S.
,
Horii
T.
,
Rodriguez
A.
,
Núñez
G.
.
2010
.
Experimental cerebral malaria progresses independently of the Nlrp3 inflammasome.
Eur. J. Immunol.
40
:
764
769
.
78
Gorfu, G., K. M. Cirelli, M. B. Melo, K. Mayer-Barber, D. Crown, B. H. Koller, S. Masters, A. Sher, S. H. Leppla, M. Moayeri, et al. 2013. Dual role for inflammasome sensors NLRP1 and NLRP3 in murine resistance to Toxoplasma gondii. MBio 5: e01117-13
.
79
Silva
G. K.
,
Costa
R. S.
,
Silveira
T. N.
,
Caetano
B. C.
,
Horta
C. V.
,
Gutierrez
F. R.
,
Guedes
P. M.
,
Andrade
W. A.
,
De Niz
M.
,
Gazzinelli
R. T.
, et al
.
2013
.
Apoptosis-associated speck-like protein containing a caspase recruitment domain inflammasomes mediate IL-1β response and host resistance to Trypanosoma cruzi infection.
J. Immunol.
191
:
3373
3383
.
80
Gonçalves, V. M., K. C. Matteucci, C. L. Buzzo, B. H. Miollo, D. Ferrante, A. C. Torrecilhas, M. M. Rodrigues, J. M. Alvarez, and K. R. Bortoluci. 2013. NLRP3 controls Trypanosoma cruzi infection through a caspase-1-dependent IL-1R-independent NO production. PLoS Negl. Trop. Dis. 7: e2469
.

The authors have no financial conflicts of interest.