Immune mechanisms have evolved to cope with local entry of microbes acting in a confined fashion but eventually inducing systemic immune memory. Indeed, in situ delivery of a number of agents into tumors can mimic in the malignant tissue the phenomena that control intracellular infection leading to the killing of infected cells. Vascular endothelium activation and lymphocyte attraction, together with dendritic cell–mediated cross-priming, are the key elements. Intratumoral therapy with pathogen-associated molecular patterns or recombinant viruses is being tested in the clinic. Cell therapies can be also delivered intratumorally, including infusion of autologous dendritic cells and even tumor-reactive T lymphocytes. Intralesional virotherapy with an HSV vector expressing GM-CSF has been recently approved by the Food and Drug Administration for the treatment of unresectable melanoma. Immunomodulatory monoclonal Abs have also been successfully applied intratumorally in animal models. Local delivery means less systemic toxicity while focusing the immune response on the malignancy and the affected draining lymph nodes.

More than 100 years ago, the surgeon William Coley found that in some cases of soft tissue sarcoma there were regressions following erysipelas. Facing similar cases in his practice, he proceeded to cause such risky infections on purpose, observing some successful responses. To make it safer he went on to use bacterial-derived material (Coley’s toxins) to locally inject tumor masses (1, 2). Since then, we have learned that the results obtained by Coley were related to a systemic antitumor immune response following local delivery of the ill-defined microorganisms and bacterial toxins.

These empiric ideas have found application for superficial urothelial carcinoma, which is often treated by transurethral instillation of bacillus Calmette–Guérin. Today this procedure remains the adjuvant treatment of choice, due to its ability to prevent both local and distant relapses (3).

The type of immunity that can deal with a tumor is related to the evolutionary mechanisms shaped to combat intracellular pathogens such as viruses and mycobacteria. To perform such a critical function, the immune system is equipped with the ability to kill infected cells while inhibiting the spread of pathogens to other cells and distant organs. Therefore, in immunotherapy, one of the goals is to make the tumor, with its Ags, to look like an intracellular pathogen–infected tissue. To achieve this, several strategies are possible that would locally release and activate the biochemical signals derived from pathogen presence and unprogrammed cell destruction. These notions build on the ideas of Charles Janeway and Polly Matzinger who elaborated on the concept that the immune system has evolved to respond against infection and agents causing tissue damage (4, 5).

Following in Coley’s footsteps, we can now deliver into tumors molecularly defined pathogen-associated molecular patterns (PAMPs), safe recombinant viruses or bacteria as well as inflammatory and immune mediators. Interventional radiologists and laparoscopic surgeons have evolved the tools to gain access for injection to almost every organ in the human body and several lesions can be simultaneously or sequentially injected, expecting impact not only on the treated lesion, but also on distant non-injected tumor sites or subclinical undetected metastases (i.e., minimal residual disease). In a way, the strategy aims to turn the treated lesion into a sort of vaccine against the untreated metastasis. This concept has been summarized as in situ vaccination (6, 7). Following a term coined by the radiotherapy community, effects of local treatment can be observed outside the localized irradiation/treatment fields, the so-called abscopal effects (8).

Presentation of tumor Ags to T lymphocytes able to differentiate into CTL and IFN-γ producing Th1 cells is a critical point to start efficacious antitumor immunity. Tumor cells perform poorly as Ag presenting cells and this step needs the contribution of professional APCs of dendritic cell (DC) lineage (9, 10).

The classical scheme borrowed from vaccination experiments involves DCs taking up Ags in peripheral tissues (11) and sensing pathogen presence (9) or cell destruction/inflammation by means of innate receptors. Subsequently, DCs need to migrate to regional lymph nodes to encounter naive and central memory T cells. More recent evidence suggests a key role for functionally specialized DC subsets, which are equipped to cross-present Ags to CTL precursors (12, 13). This subtype is known to be BATF3-dependent, XCR1+ DCs in mice (14). In humans, these cells are primarily represented by XCR1+, CLEC9a+, CD141+ DCs (15) and have been shown to be strong producers of IL-12 following stimulation with polyinosinic–polycytidylic acid (poly I:C) (16). These specialized subsets are endowed with the ability to divert engulfed cell-associated Ags to the MHC class I Ag–presenting pathway (10) and to produce high amounts of IL-12 in response to the presence of pathogens (mainly RNA viruses) (17, 18).

Ag presentation mechanisms are conceivably poorly operational in tumor tissue, giving rise to peripheral tolerance rather than to type I tissue-destructing immunity. In this regard, the tumor is rich in immunosuppressive factors for DC function such as TGF-β (19), oxidized lipids (20), IL-10 (21, 22), etc. Hence, potentiation of these Ag-cross-priming functions in tumors may turn them into a vaccine. In line with this, release of Ags surpassing the ability of macrophages to clear cell debris and making DCs believe that they are dealing with a virally infected tissue is an alternative to promote cross-presentation of tumor Ags both locally and in tumor-draining lymph nodes (23, 24). It has been documented that the local production of IFN-α/β is critical for these phenomena resulting in Ag cross-priming (25, 26) as well as a number of eat me signals and alarmins such as extracellular ATP and high mobility group box 1, biochemical events that converge in what is known as immunogenic cell death (27, 28).

Recognition of the presence of pathogens beyond epithelial barriers is mediated by an intricate set of innate receptors that detect moieties exclusively or selectively expressed by viruses and/or prokaryotae (29). These receptors mainly involve TLR on the plasma membrane and in endosomal compartments, cytoplasmic receptors for viral nucleic acids [RIG-I, MDA-5 and the stimulator of IFN gene (STING) system], and the intracellular NOD-family of receptor-complexes. Interestingly, these sets of receptors are entangled, and in many cases shared by the molecular machineries that detect stressful or unwanted cell death (30, 31) expected to occur under intracellular infectious conditions. Stressful cell death can be artificially induced by microwaves, heat, ionizing radiation, and other physical-chemical agents.

In this regard, transplantable mouse tumor models injected locally with TLR4 agonists such as LPS (32) and monophosphoryl lipid A (33) undergo regressions that are mediated by an anti-tumor immune response. In humans, such an approach has not yet been reported, but the intratumoral delivery of the synthetic TLR4 agonist G100 is being evaluated in an ongoing clinical trial (NCT 02501473, Table I) that is exploring its effect against Merkel cell carcinoma and soft tissue sarcoma, in the latter case combined with radiotherapy. Similarly, there are TLR4 endogenous agonists such as the nuclear protein HMGB1, and this pathway is turned on upon stressful cell death. Indeed, for cell death to be immunogenic, this pathway is critical in mouse models (34). In fact, following adjuvant chemotherapy for breast cancer, subjects with hypofunctional TLR4 alleles have worse overall survival (34). Injecting cytokines as recombinant proteins directly into the tumor has been attempted. For instance, IL-2 injected in cutaneous melanoma lesions is known to be locally effective but provides little systemic benefit (35).

Table I.
Ongoing clinical trials on intratumoral delivery of immunotherapy
AgentCombinationTumor HistotypeTrial IDStatus
PAMPs and analogs CpG (PF-3512676) Radiotherapy Non-Hodgkin lymphoma NCT00880581 Recruiting 
CpG (SD-101) Pembrolizumab Melanoma NCT02521870 Recruiting 
Ipilimumab, radiotherapy Non Hodgkin lymphoma NCT02254772 Recruiting 
Radiotherapy Hodgkin or non-Hodgkin lymphoma NCT01745354 Recruiting 
Radiotherapy Non-Hodgkin lymphoma NCT02266147 Recruiting 
CpG (IMO-2125) Ipilimumab Melanoma NCT02644967 Recruiting 
CpG (CMP-001) Pembrolizumab Melanoma NCT02680184 Recruiting 
Glucopyranosyl lipid adjuvant in stable emulsion (G100) Radiotherapy Merkel-cell carcinoma NCT02035657 Recruiting completed 
Glucopyranosyl lipid adjuvant in stable emulsion (G100) Radiotherapy, pembrolizumab Non-Hodgkin lymphoma NCT02501473 Recruiting 
Lefitolimod (MGN1703) Ipilimumab Solid tumors NCT02668770 Recruiting 
Poly-I:CLC (Hiltonol) Intratumoral rhuFlt3L, radiotherapy Non-Hodgkin lymphoma NCT01976585 Recruiting 
 Melanoma and non-melanoma skin cancer, sarcoma, head and neck squamous carcinoma NCT02423863 Recruiting 
Imidizaquinoline derivative (MEDI9197)  Solid tumors NCT02556463 Recruiting 
Clostridium Novyi-NT spores  Solid tumors NCT01924689 Recruiting 
Allogenic CD4+ memory Th1-like T cell (Allostim) Cryoablation Colorectal cancer NCT02380443 Not yet recruiting 
Cyclic dinucleotides (MIW815)  Solid tumors or lymphoma NCT02675439 Recruiting 
Cytokines Vector-encoded IL-12  Melanoma NCT01502293 Not yet recruiting 
Head and neck squamous carcinoma NCT02345330 Not yet recruiting 
Breast cancer NCT02531425 Recruiting 
Dendritic cells Activated allogenic DC (INTUVAX)  Gastrointestinal stromal tumors NCT02686944 Not yet recruiting 
Activated DC Chemotherapy Breast cancer NCT02018458 Recruiting 
Autologous DC expressing CCL21 (Ad-CCL21-DC)  Non-small cell lung cancer NCT01574222 Not yet recruiting 
Autologous DC pulsed with keyhole limpet hemocyanin Recombinant adenovirus expressing TNF-α or radiotherapy Pancreatic cancer NCT00868114 Not yet recruiting 
Autologous DC Intratumoral GM-CSF and rituximab, radiotherapy Non-Hodgkin lymphoma NCT02677155 Recruiting 
Autologous DC Cryotherapy Prostate cancer NCT02423928 Recruiting 
Virotherapy Parvovirus [1H] (ParvOryx)  Pancreatic cancer NCT02653313 Recruiting 
Vaccinia-virus encoding GM-CSF (Pexa Vec) Targeted therapy Hepatocellular carcinoma NCT02562755 Recruiting 
Measles virus vaccine encoding carcinoembryonic Ag (MV-CEA)  Glioblastoma NCT00390299 Recruiting 
Replication-competent adenovirus expressing PH20 hyaluronidase (VCN-01) Chemotherapy Pancreatic cancer NCT02045589 Recruiting 
Mutant replication-competent HSV-1 (HSV1716)  Non–central-nervous system solid tumors NCT00931931 Recruiting 
Coxsackievirus A21 (CAVATAK) Ipilimumab Melanoma NCT02307149 Recruiting 
Telomerase-specific replication-competent adenovirus (Telomelysin)  Hepatocellular carcinoma NCT02293850 Recruiting 
Replication-deficient adenovirus encoding inducible IL-12 Veledimex Glioblastoma or high grade glioma NCT02026271 Recruiting 
Breast cancer NCT02423902 
Replication-deficient adenovirus encoding IFN-γ (ASN-002)  Basal-cell carcinoma NCT02550678 Recruiting 
Mutant replication-competent HSV-1 (HF10) Ipilimumab Melanoma NCT02272855 Recruiting 
Replication-competent adenovirus encoding CD40L and 4-1BBL Chemotherapy Pancreatic cancer NCT02705196 Not yet recruiting 
Vesicular stomatitis virus-expressing IFN-β  Hepatocellular carcinoma NCT01628640 Recruiting 
Replication-competent HSV-1 virus encoding GM-CSF (T-VEC)  Melanoma NCT01740297 Recruiting 
Breast cancer NCT02658812 Not yet recruiting 
Replication-competent adenovirus (DNX-2401) Temozolomide Glioblastoma NCT01956734 Not yet recruiting 
IFN-γ Glioblastoma or gliosarcoma NCT02197169 Recruiting 
Vaccinia GM CSF/thymidine kinase-deactivated virus (Pexa Vec) Sorafenib Hepatocellular carcinoma NCT02562755 Recruiting 
 Recombinant fowlpox PANVAC (PANVAC-F) Subcutaneous Recombinant vaccinia + GM-CSF Pancreatic cancer NCT00669734 Not yet recruiting 
 Replication-deficient Sendai virus particle GEN0101  Prostate cancer NCT02502994 Recruiting 
 Adenoviral vector expressing HSV-tk (aglatimagene besadenovec) Valaciclovir, FOLFIRINOX, radiotherapy Pancreatic cancer NCT02446093 Recruiting 
MoAbs Agonistic anti CD-40 Ab (ADC-1013)  Solid tumors NCT02379741 Recruiting 
Agonistic anti-CD40 Ab (APX005M) Pembrolizumab Melanoma NCT02706353 Not yet recruiting 
Adoptive cell therapy CD4 CARs (T1E28z)  Head and neck squamous carcinoma NCT01818323 Recruiting 
AgentCombinationTumor HistotypeTrial IDStatus
PAMPs and analogs CpG (PF-3512676) Radiotherapy Non-Hodgkin lymphoma NCT00880581 Recruiting 
CpG (SD-101) Pembrolizumab Melanoma NCT02521870 Recruiting 
Ipilimumab, radiotherapy Non Hodgkin lymphoma NCT02254772 Recruiting 
Radiotherapy Hodgkin or non-Hodgkin lymphoma NCT01745354 Recruiting 
Radiotherapy Non-Hodgkin lymphoma NCT02266147 Recruiting 
CpG (IMO-2125) Ipilimumab Melanoma NCT02644967 Recruiting 
CpG (CMP-001) Pembrolizumab Melanoma NCT02680184 Recruiting 
Glucopyranosyl lipid adjuvant in stable emulsion (G100) Radiotherapy Merkel-cell carcinoma NCT02035657 Recruiting completed 
Glucopyranosyl lipid adjuvant in stable emulsion (G100) Radiotherapy, pembrolizumab Non-Hodgkin lymphoma NCT02501473 Recruiting 
Lefitolimod (MGN1703) Ipilimumab Solid tumors NCT02668770 Recruiting 
Poly-I:CLC (Hiltonol) Intratumoral rhuFlt3L, radiotherapy Non-Hodgkin lymphoma NCT01976585 Recruiting 
 Melanoma and non-melanoma skin cancer, sarcoma, head and neck squamous carcinoma NCT02423863 Recruiting 
Imidizaquinoline derivative (MEDI9197)  Solid tumors NCT02556463 Recruiting 
Clostridium Novyi-NT spores  Solid tumors NCT01924689 Recruiting 
Allogenic CD4+ memory Th1-like T cell (Allostim) Cryoablation Colorectal cancer NCT02380443 Not yet recruiting 
Cyclic dinucleotides (MIW815)  Solid tumors or lymphoma NCT02675439 Recruiting 
Cytokines Vector-encoded IL-12  Melanoma NCT01502293 Not yet recruiting 
Head and neck squamous carcinoma NCT02345330 Not yet recruiting 
Breast cancer NCT02531425 Recruiting 
Dendritic cells Activated allogenic DC (INTUVAX)  Gastrointestinal stromal tumors NCT02686944 Not yet recruiting 
Activated DC Chemotherapy Breast cancer NCT02018458 Recruiting 
Autologous DC expressing CCL21 (Ad-CCL21-DC)  Non-small cell lung cancer NCT01574222 Not yet recruiting 
Autologous DC pulsed with keyhole limpet hemocyanin Recombinant adenovirus expressing TNF-α or radiotherapy Pancreatic cancer NCT00868114 Not yet recruiting 
Autologous DC Intratumoral GM-CSF and rituximab, radiotherapy Non-Hodgkin lymphoma NCT02677155 Recruiting 
Autologous DC Cryotherapy Prostate cancer NCT02423928 Recruiting 
Virotherapy Parvovirus [1H] (ParvOryx)  Pancreatic cancer NCT02653313 Recruiting 
Vaccinia-virus encoding GM-CSF (Pexa Vec) Targeted therapy Hepatocellular carcinoma NCT02562755 Recruiting 
Measles virus vaccine encoding carcinoembryonic Ag (MV-CEA)  Glioblastoma NCT00390299 Recruiting 
Replication-competent adenovirus expressing PH20 hyaluronidase (VCN-01) Chemotherapy Pancreatic cancer NCT02045589 Recruiting 
Mutant replication-competent HSV-1 (HSV1716)  Non–central-nervous system solid tumors NCT00931931 Recruiting 
Coxsackievirus A21 (CAVATAK) Ipilimumab Melanoma NCT02307149 Recruiting 
Telomerase-specific replication-competent adenovirus (Telomelysin)  Hepatocellular carcinoma NCT02293850 Recruiting 
Replication-deficient adenovirus encoding inducible IL-12 Veledimex Glioblastoma or high grade glioma NCT02026271 Recruiting 
Breast cancer NCT02423902 
Replication-deficient adenovirus encoding IFN-γ (ASN-002)  Basal-cell carcinoma NCT02550678 Recruiting 
Mutant replication-competent HSV-1 (HF10) Ipilimumab Melanoma NCT02272855 Recruiting 
Replication-competent adenovirus encoding CD40L and 4-1BBL Chemotherapy Pancreatic cancer NCT02705196 Not yet recruiting 
Vesicular stomatitis virus-expressing IFN-β  Hepatocellular carcinoma NCT01628640 Recruiting 
Replication-competent HSV-1 virus encoding GM-CSF (T-VEC)  Melanoma NCT01740297 Recruiting 
Breast cancer NCT02658812 Not yet recruiting 
Replication-competent adenovirus (DNX-2401) Temozolomide Glioblastoma NCT01956734 Not yet recruiting 
IFN-γ Glioblastoma or gliosarcoma NCT02197169 Recruiting 
Vaccinia GM CSF/thymidine kinase-deactivated virus (Pexa Vec) Sorafenib Hepatocellular carcinoma NCT02562755 Recruiting 
 Recombinant fowlpox PANVAC (PANVAC-F) Subcutaneous Recombinant vaccinia + GM-CSF Pancreatic cancer NCT00669734 Not yet recruiting 
 Replication-deficient Sendai virus particle GEN0101  Prostate cancer NCT02502994 Recruiting 
 Adenoviral vector expressing HSV-tk (aglatimagene besadenovec) Valaciclovir, FOLFIRINOX, radiotherapy Pancreatic cancer NCT02446093 Recruiting 
MoAbs Agonistic anti CD-40 Ab (ADC-1013)  Solid tumors NCT02379741 Recruiting 
Agonistic anti-CD40 Ab (APX005M) Pembrolizumab Melanoma NCT02706353 Not yet recruiting 
Adoptive cell therapy CD4 CARs (T1E28z)  Head and neck squamous carcinoma NCT01818323 Recruiting 

Bacterial DNA is sensed by the presence of unmethylated CpG motifs by endosomal TLR9 and can be mimicked by oligonucleotides optimizing these CpG sequences in which those cytosines are not methylated (36, 37). Intratumoral delivery of CpG oligonucleotides is active against mouse models (38, 39) and the group of R. Levy has carried out seminal work injecting CpG oligonucleotides into human lymphoma lesions to achieve objective clinical responses when combined with low-dose limited field radiotherapy (40).

Plasmids or RNAs encoding for cytokines can be of use while also providing the innate response to bacterial nucleic acids. Recent evidence with a plasmid encoding single chain IL-12 that is in vivo electroporated into cutaneous melanoma has shown strong signs of clinical activity (41).

dsRNA is mimicked by poly I:C and is detected by endosomal TLR3 and the intracellular sensors RIG-I and MDA-5 (42, 43). Pharmaceutical formulations of poly I:C have been used to treat transplantable mouse tumors, yielding good results particularly when combined with checkpoint inhibitors (44, 45). A stabilized formulation of poly I:C (poly ICLC, Hiltonol) is being used as monotherapy or in combination for intratumoral delivery in a number of clinical trials (46). Another promising nanocomplexed poly I:C agent is also under late preclinical development (47). Because TLR3 is the main PAMP receptor in XCR1+ cross-priming DCs (15, 48), there are trials that combine sFlt-3L to expand the numbers of such DCs combined with intratumoral Hiltonol (NCT 01924689).

TLR7/8 natural agonists are single-stranded RNA molecules with viral features. Chemical agonists such as imiquimod (49) and resiquimod (50) have been developed. Imiquimod, which is formulated as a cream, is active against basal cell carcinoma, melanoma and other skin neoplasms (51) as well as against common warts. Local imiquimod has been used successfully in immunotherapy combinations to treat transplantable mouse models (52, 53), and has been combined with radiotherapy for breast cancer in the clinic (54).

More recently, the STING pathway was found to be critical for antitumor immunity (55). This molecular system detects cytosolic dsDNA through cGAS, which produces cyclic dinucleotides as second messengers, leading to STING activation (56, 57). Intratumoral injection of STING-agonist dinucleotides unleashes a powerful and often curative tumor response against transplantable mouse models (55) and human STING agonists are undergoing clinical development in this setting (NCT 02675439). An intact type I IFN system is critical for both TLR-3 and STING agonists (58). Indeed, the group of T. Gajewski has found that STING detection of some form of tumor DNA is critical for the baseline immune response against many tumors (59).

Viral vectors have been considered vehicles to deliver genes. However, they are sensed by the immune system and elicit strong immune responses (6062). In this regard, recombinant replicative viruses have been engineered to selectively kill malignant cells in what is called oncolytic virotherapy (60). The original work for each replication-conditional virus relied on a peculiar biochemical feature of the tumor cells to selectively sustain viral replication. However, it is now fully realized that the main mechanism of action of oncolytic viruses is mediated by the ensuing antitumor immune response against viral-infected cells (60). In this regard, both oncolytic viruses and viral vectors are most often genetically engineered to express cytokines or other proimmune factors (6366).

Intratumoral delivery of bacteria such as Clostridium spp. (67) and virus-based agents (66, 6870) has been extensively tested in transplantable mouse models achieving good local results, while rarely showing efficacy on distantly implanted lesions. One of the problems with viral vectors carrying structural proteins is that the immune response tends to be dominant against the foreign viral Ags, whereas the rules dictating epitope spreading to tumor Ags are not well understood.

In this scenario, it is quite possible that the most potent viruses at eliciting an antitumor immune response would be RNA viruses such as Newcastle Disease Virus (7173), Sindbis virus (74) or Semliki forest virus (74, 75). These and other virus types (e.g., vaccinia, herpes virus) have proven to be most effective when they are engineered to encode for immune-promoting genes such as IL-12 and GM-CSF (68, 7678). In all cases these agents are dramatically enhanced in their therapeutic performances by concomitant administration of PD1/PD-L1 and CTLA-4 blocking Abs (73, 79) as well as anti-CD137 or anti-OX40 agonist Abs (80, 81).

In the clinic, an HSV-1 modified oncolytic virus encoding GM-CSF (T-vec, talimogene) has been granted Food and Drug Administration approval for unresectable melanoma when used by intratumoral injection of accessible lesions (76). This translational development represents a milestone in cancer therapeutics and is especially promising in combination with immune checkpoint blocking mAbs, and such combination clinical trials are already underway (NCT02263508, NCT02626000). A recent report on a phase I clinical trial with locally delivered T-vec in conjunction with systemic anti-CTLA-4 mAb (Ipilimumab) achieved a promising overall response rate of 50%, most of which were durable (82). Vectors based on vaccinia virus encoding GM-CSF are also under clinical development (JX-594) with promising results (83, 84). Oncolytic viruses based on adenovirus have also been repeatedly tried in the clinic, but to date their performance has been deemed unsatisfactory (85, 86).

The innate response to viral PAMPs is conceivably important for the outcome by means of inducing IFN-α/β in response to their viral nucleic acids (75, 87) and causing cytopathic immunogenic tumor cell death. Viral RNA is sensed by TLR3, TLR7, and TLR8 in the endosomes and by RIG-I and MDA5 in the cytosol (88, 89). This innate sensing of viral nucleic acids is critical for the therapeutic outcome.

Immunomodulatory mAbs tampering with immune cell receptors constitute a revolution in cancer therapy of unprecedented efficacy (90, 91). The usual mode of delivery is systemic, because this route produces predictable pharmacokinetics and is considered to achieve full receptor occupancy even in the tumor (92), although in at least two cases full receptor occupancy was not reached in the tumor microenvironment after full doses of anti PD-1 mAb (93).

There are three potential advantages if the activity of such Abs is confined to the tumor microenvironment: 1) the most relevant sites of action are on the surface of lymphocytes already infiltrating the tumor or present in the tumor microenvironment; 2) tissue penetration of systemically administered mAb is poorly defined in cancer; and 3) systemic autoimmune and inflammatory side effects can be limited with lower systemic exposure (94). Another potential advantage of local administration is that it likely targets the lymphoid tissue downstream of lymphatic drainage from the injected tumor.

All these principles have been tested in transplanted mouse tumor models including treatment with anti-CTLA-4 (95), anti-CD40 (96, 97), anti-OX40, and anti-CD137 (98, 99) mAbs. In some cases, mAbs have been formulated in emulsions to cause a depot effect and slow release, to maximize local bioavailability (97). Alternatively it might be possible to generate targeted bi- or multispecific Ab–based moieties, given systemically but becoming enriched in the tumor microenvironment (100). However, the best targeting technology still achieves limited local enrichment.

The more systemic toxicity an immunostimulatory Ab presents, the more advisable it seems to deliver it locally. Local delivery permits combinations as described for anti-PD-1 plus anti-CD137 (101) or for anti-CTLA-4 plus anti-OX40 (37). In our opinion, the use of anti-CD137 and superagonist anti-CD40 mAbs (NCT02379741) by intratumoral routes makes sense in light of their systemic toxicity profile (102105).

Cell therapy strategies in immunotherapy involve ex-vivo culture and/or differentiation of immune cells under good manufacturing practices. For instance, DCs have often been used to formulate therapeutic cancer vaccines given through intradermal or i.v. routes (106). Other approaches that have been attempted to maximize bioavailability include intranodal injections (ultrasound-guided injection inside lymph nodes) (107109).

In DC therapy, approaches have been followed to deliver DCs inside tumors (110, 111). The most successful schemes in mouse models involved DCs transfected to express IL-12 (110) or local DC activation with other immunostimulatory genes (112). Such an approach has been transferred to the clinic with limited success (113). One of the caveats is that the tumor microenvironment is highly suppressive for their function (114). More refined strategies ought to involve tumor tissue destruction before intralesional delivery of such APCs. Moreover, tumors should be injected with DC subsets capable of mediating cross-priming (115, 116), because Ags should be uptaken from the tumor cells rather than exogenously given or uploaded (117). One potential advantage is that tumor neoantigens are expected to be immunogenically presented by these strategies that see tumor vaccination with DCs more as a “self-service buffet” than an “à la carte restaurant” (117). In transplanted tumor models in mice, intratumoral injection of DC synergized with radiotherapy (118). The use for this purpose of CD141+ DC that are specialized in cross-priming could be advisable even if the numbers of this subset complicate ex vivo isolation and no reliable differentiation culture is available from human precursors yet. However, increasing their numbers in peripheral blood by means of sFLT-3L pretreatment seems to be a feasible alternative to attain sufficient numbers (119).

Activated T and NK cells can also be administered intratumorally. This idea is still in its infancy but potentially could achieve a round of local activation upon Ag recognition and subsequent recirculation in search of distant tumor lesions. Again, the limiting factor is likely to be the presence of substances in the tumor such as TGF-β that will dampen and impair their performance (120, 121). Engineering the T cells with artificial Ag receptors (TCRs or CARs) with cytotoxic encoding gene-expression cassettes, or providing them with the molecular means to resist the local immunosuppressive factors could be instrumental to attaining clinical efficacy (122, 123). The main advantage of intratumoral delivery of these cells would be to bypass the need for a T cell entrance into the tumor, crossing endothelial barriers and the fact that a high local concentration of T cells will be present inside the directly treated lesions (124). Combining systemic and local delivery of adoptive T cell therapy would be an appealing alternative in this regard.

It is also theoretically possible, although cumbersome from a regulatory point of view, to combine more than one immune cell type to be released intratumorally in such a way that the contribution of several cellular players could be required to achieve a maximal therapeutic response. It should not be forgotten that the antitumor concerts of the immune system perform more efficiently as an orchestra of cell types (125) than as a soloist recital.

Radiotherapy of cancer is generally considered a local treatment without effect on non-irradiated metastases. However, recent research has defined that irradiation leads to immunogenic cell death and can be exploited to create in situ tumor vaccines (126, 127). Indeed, when radiotherapy is combined with anti-CTLA-4, anti-PD-1 or anti-CD137 mAbs cause distant (abscopal) effects (128) on non-irradiated tumors in mice, and, as in some instances already reported, in humans (129132). Furthermore, local delivery of TLR7 or TLR9 agonists at a tumor site gives rise to systemic effects on non-irradiated lesions (40, 53, 54). Pilot clinical trials have been reported using both strategies and there are ongoing clinical trials testing radiotherapy plus immunotherapy combinations (Table I).

Radiotherapy is not the only physical therapy to cause immunogenic tumor destruction. Cryotherapy (52), radiofrequency (133), electrochemotherapy (134), and chemoembolization (135) all have potential in this regard. Studying the underlying biology will be of paramount importance, because, for instance, TGF-β induction by radiotherapy might be a serious drawback (136).

There are a number of immune mechanisms to be exploited by local delivery that would mimic infection by a pathogen (Fig. 1). The key aspect is that local intervention needs to exert systemic effects against distant metastases based on lymphocyte recirculation. The difficulty in achieving systemic effects would depend on factors such as proximity, similar lymphatic drainage, vascularization or truly anatomical distance. In tumor vaccination, it has been observed that the site of priming imprints recirculation patterns to T cells (137). This cellular behavior is dependent on chemokine and tissue homing receptors. Interestingly, DCs in each territory imprint the pattern of recirculation receptors to the T cells that they prime by cognate Ag presentation (138).

FIGURE 1.

Concept of local immunotherapy with systemic (abscopal) effect. Schematic representation of the mechanisms that, following local immunotherapy, can yield therapeutic systemic effects. The varying grades of difficulty in achieving responses in terms of anatomical distance are graded I–IV. ACT, adoptive T cell therapy; CARs, chimeric Ag receptors; mets, metastases; TACE, transarterial chemoembolization.

FIGURE 1.

Concept of local immunotherapy with systemic (abscopal) effect. Schematic representation of the mechanisms that, following local immunotherapy, can yield therapeutic systemic effects. The varying grades of difficulty in achieving responses in terms of anatomical distance are graded I–IV. ACT, adoptive T cell therapy; CARs, chimeric Ag receptors; mets, metastases; TACE, transarterial chemoembolization.

Close modal

According to these ideas, the less related an anatomical location is to the distant non-treated tumors, the less prone to respond it will be. Indeed, this has been observed with T-vec (139). However, it becomes possible to administer the successful local treatment to other, still progressing, lesions if the originally injected lesion responds. Repetition might be less successful with viruses because of antiviral neutralizing immunity, but different viruses could be rotated and intratumoral PAMPs in principle do not have this potential caveat of agent-neutralizing immunity.

Intratumoral delivery of immunotherapy offers advantages that call for its extensive clinical testing (Table I) and raise the need for new surrogate endpoints to monitor local and systemic efficacy. Pharmaceutical formulations of the agents and strategies of encapsulation, gene therapy or cell therapy need to be considered and developed. Local delivery of immunotherapy agents approved by the Food and Drug Administration and European Medicines Agency should be proposed and compared with systemic administration. Acting locally may pay off when treating cancer globally by means of combined immunotherapy strategies (140142).

This work was supported by the Fundación BBVA and Ministerio de Economía y Competitivida Grant SAF2014-52361-R (to I.M.).

Abbreviations used in this article:

DC

dendritic cell

PAMP

pathogen-associated molecular pattern

poly I:C

polyinosinic-polycytidylic acid

STING

stimulator of IFN genes.

1
Coley
W. B.
1906
.
Late results of the treatment of inoperable sarcoma by the mixed toxins of erysipelas and bacillus prodigiosus.
Am. J. Med. Sci.
131
:
375
430
.
2
Coley
W. B.
1910
.
The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus).
Proc. R. Soc. Med.
3
(
Surg Sect
):
1
48
.
3
Han
R. F.
,
Pan
J. G.
.
2006
.
Can intravesical bacillus Calmette–Guérin reduce recurrence in patients with superficial bladder cancer? A meta-analysis of randomized trials.
Urology
67
:
1216
1223
.
4
Janeway
C. A.
 Jr.
1992
.
The immune system evolved to discriminate infectious nonself from noninfectious self.
Immunol. Today
13
:
11
16
.
5
Matzinger
P.
2007
.
Friendly and dangerous signals: is the tissue in control?
Nat. Immunol.
8
:
11
13
.
6
Hammerich
L.
,
Binder
A.
,
Brody
J. D.
.
2015
.
In situ vaccination: cancer immunotherapy both personalized and off-the-shelf.
Mol. Oncol.
9
:
1966
1981
.
7
Marabelle
A.
,
Kohrt
H.
,
Caux
C.
,
Levy
R.
.
2014
.
Intratumoral immunization: a new paradigm for cancer therapy.
Clin. Cancer Res.
20
:
1747
1756
.
8
Kaminski
J. M.
,
Shinohara
E.
,
Summers
J. B.
,
Niermann
K. J.
,
Morimoto
A.
,
Brousal
J.
.
2005
.
The controversial abscopal effect.
Cancer Treat. Rev.
31
:
159
172
.
9
Steinman
R. M.
2012
.
Decisions about dendritic cells: past, present, and future.
Annu. Rev. Immunol.
30
:
1
22
.
10
Joffre
O. P.
,
Segura
E.
,
Savina
A.
,
Amigorena
S.
.
2012
.
Cross-presentation by dendritic cells.
Nat. Rev. Immunol.
12
:
557
569
.
11
Inaba
K.
,
Turley
S.
,
Yamaide
F.
,
Iyoda
T.
,
Mahnke
K.
,
Inaba
M.
,
Pack
M.
,
Subklewe
M.
,
Sauter
B.
,
Sheff
D.
, et al
.
1998
.
Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells.
J. Exp. Med.
188
:
2163
2173
.
12
Broz
M. L.
,
Binnewies
M.
,
Boldajipour
B.
,
Nelson
A. E.
,
Pollack
J. L.
,
Erle
D. J.
,
Barczak
A.
,
Rosenblum
M. D.
,
Daud
A.
,
Barber
D. L.
, et al
.
2014
.
Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity.
Cancer Cell
26
:
638
652
.
13
Hildner
K.
,
Edelson
B. T.
,
Purtha
W. E.
,
Diamond
M.
,
Matsushita
H.
,
Kohyama
M.
,
Calderon
B.
,
Schraml
B. U.
,
Unanue
E. R.
,
Diamond
M. S.
, et al
.
2008
.
Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity.
Science
322
:
1097
1100
.
14
Schraml
B. U.
,
Reis e Sousa
C.
.
2015
.
Defining dendritic cells.
Curr. Opin. Immunol.
32
:
13
20
.
15
Poulin
L. F.
,
Salio
M.
,
Griessinger
E.
,
Anjos-Afonso
F.
,
Craciun
L.
,
Chen
J. L.
,
Keller
A. M.
,
Joffre
O.
,
Zelenay
S.
,
Nye
E.
, et al
.
2010
.
Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells.
J. Exp. Med.
207
:
1261
1271
.
16
Jongbloed
S. L.
,
Kassianos
A. J.
,
McDonald
K. J.
,
Clark
G. J.
,
Ju
X.
,
Angel
C. E.
,
Chen
C. J.
,
Dunbar
P. R.
,
Wadley
R. B.
,
Jeet
V.
, et al
.
2010
.
Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens.
J. Exp. Med.
207
:
1247
1260
.
17
Zitvogel
L.
,
Kroemer
G.
.
2014
.
CD103+ dendritic cells producing interleukin-12 in anticancer immunosurveillance.
Cancer Cell
26
:
591
593
.
18
Martínez-López
M.
,
Iborra
S.
,
Conde-Garrosa
R.
,
Sancho
D.
.
2015
.
Batf3-dependent CD103+ dendritic cells are major producers of IL-12 that drive local Th1 immunity against Leishmania major infection in mice.
Eur. J. Immunol.
45
:
119
129
.
19
Ghiringhelli
F.
,
Puig
P. E.
,
Roux
S.
,
Parcellier
A.
,
Schmitt
E.
,
Solary
E.
,
Kroemer
G.
,
Martin
F.
,
Chauffert
B.
,
Zitvogel
L.
.
2005
.
Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation.
J. Exp. Med.
202
:
919
929
.
20
Herber
D. L.
,
Cao
W.
,
Nefedova
Y.
,
Novitskiy
S. V.
,
Nagaraj
S.
,
Tyurin
V. A.
,
Corzo
A.
,
Cho
H. I.
,
Celis
E.
,
Lennox
B.
, et al
.
2010
.
Lipid accumulation and dendritic cell dysfunction in cancer.
Nat. Med.
16
:
880
886
.
21
Díaz-Valdés
N.
,
Manterola
L.
,
Belsúe
V.
,
Riezu-Boj
J. I.
,
Larrea
E.
,
Echeverria
I.
,
Llópiz
D.
,
López-Sagaseta
J.
,
Lerat
H.
,
Pawlotsky
J. M.
, et al
.
2011
.
Improved dendritic cell-based immunization against hepatitis C virus using peptide inhibitors of interleukin 10.
Hepatology
53
:
23
31
.
22
Ruffell
B.
,
Chang-Strachan
D.
,
Chan
V.
,
Rosenbusch
A.
,
Ho
C. M.
,
Pryer
N.
,
Daniel
D.
,
Hwang
E. S.
,
Rugo
H. S.
,
Coussens
L. M.
.
2014
.
Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells.
Cancer Cell
26
:
623
637
.
23
Salmon
H.
,
Idoyaga
J.
,
Rahman
A.
,
Leboeuf
M.
,
Remark
R.
,
Jordan
S.
,
Casanova-Acebes
M.
,
Khudoynazarova
M.
,
Agudo
J.
,
Tung
N.
, et al
.
2016
.
Expansion and activation of CD103(+) dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition.
Immunity
44
:
924
938
.
24
Sánchez-Paulete
A. R.
,
Cueto
F. J.
,
Martínez-López
M.
,
Labiano
S.
,
Morales-Kastresana
A.
,
Rodríguez-Ruiz
M. E.
,
Jure-Kunkel
M.
,
Azpilikueta
A.
,
Aznar
M. A.
,
Quetglas
J. I.
, et al
.
2016
.
Cancer immunotherapy with immunomodulatory anti-CD137 and anti-PD-1 monoclonal antibodies requires BATF3-dependent dendritic cells.
Cancer Discov.
6
:
71
79
.
25
Sistigu
A.
,
Yamazaki
T.
,
Vacchelli
E.
,
Chaba
K.
,
Enot
D. P.
,
Adam
J.
,
Vitale
I.
,
Goubar
A.
,
Baracco
E. E.
,
Remédios
C.
, et al
.
2014
.
Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy.
Nat. Med.
20
:
1301
1309
.
26
Le Bon
A.
,
Etchart
N.
,
Rossmann
C.
,
Ashton
M.
,
Hou
S.
,
Gewert
D.
,
Borrow
P.
,
Tough
D. F.
.
2003
.
Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon.
Nat. Immunol.
4
:
1009
1015
.
27
Kroemer
G.
,
Galluzzi
L.
,
Kepp
O.
,
Zitvogel
L.
.
2013
.
Immunogenic cell death in cancer therapy.
Annu. Rev. Immunol.
31
:
51
72
.
28
Schiavoni
G.
,
Sistigu
A.
,
Valentini
M.
,
Mattei
F.
,
Sestili
P.
,
Spadaro
F.
,
Sanchez
M.
,
Lorenzi
S.
,
D’Urso
M. T.
,
Belardelli
F.
, et al
.
2011
.
Cyclophosphamide synergizes with type I interferons through systemic dendritic cell reactivation and induction of immunogenic tumor apoptosis.
Cancer Res.
71
:
768
778
.
29
Kumar
H.
,
Kawai
T.
,
Akira
S.
.
2011
.
Pathogen recognition by the innate immune system.
Int. Rev. Immunol.
30
:
16
34
.
30
Apetoh
L.
,
Ghiringhelli
F.
,
Tesniere
A.
,
Criollo
A.
,
Ortiz
C.
,
Lidereau
R.
,
Mariette
C.
,
Chaput
N.
,
Mira
J. P.
,
Delaloge
S.
, et al
.
2007
.
The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy.
Immunol. Rev.
220
:
47
59
.
31
Lasarte
J. J.
,
Casares
N.
,
Gorraiz
M.
,
Hervás-Stubbs
S.
,
Arribillaga
L.
,
Mansilla
C.
,
Durantez
M.
,
Llopiz
D.
,
Sarobe
P.
,
Borrás-Cuesta
F.
, et al
.
2007
.
The extra domain A from fibronectin targets antigens to TLR4-expressing cells and induces cytotoxic T cell responses in vivo.
J. Immunol.
178
:
748
756
.
32
Chicoine, M. R., E. K. Won, and M. C. Zahner. 2001. Intratumoral injection of lipopolysaccharide causes regression of subcutaneously implanted mouse glioblastoma multiforme. Neurosurgery 48: 607–614; discussion 614–605. doi:10.1097/00006123-200103000-00032
.
33
Van De Voort
T. J.
,
Felder
M. A.
,
Yang
R. K.
,
Sondel
P. M.
,
Rakhmilevich
A. L.
.
2013
.
Intratumoral delivery of low doses of anti-CD40 mAb combined with monophosphoryl lipid A induces local and systemic antitumor effects in immunocompetent and T cell-deficient mice.
J. Immunother.
36
:
29
40
.
34
Apetoh
L.
,
Ghiringhelli
F.
,
Tesniere
A.
,
Obeid
M.
,
Ortiz
C.
,
Criollo
A.
,
Mignot
G.
,
Maiuri
M. C.
,
Ullrich
E.
,
Saulnier
P.
, et al
.
2007
.
Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy.
Nat. Med.
13
:
1050
1059
.
35
Weide
B.
,
Eigentler
T. K.
,
Pflugfelder
A.
,
Zelba
H.
,
Martens
A.
,
Pawelec
G.
,
Giovannoni
L.
,
Ruffini
P. A.
,
Elia
G.
,
Neri
D.
, et al
.
2014
.
Intralesional treatment of stage III metastatic melanoma patients with L19-IL2 results in sustained clinical and systemic immunologic responses.
Cancer Immunol. Res.
2
:
668
678
.
36
Bauer
S.
,
Kirschning
C. J.
,
Häcker
H.
,
Redecke
V.
,
Hausmann
S.
,
Akira
S.
,
Wagner
H.
,
Lipford
G. B.
.
2001
.
Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition.
Proc. Natl. Acad. Sci. USA
98
:
9237
9242
.
37
Houot
R.
,
Levy
R.
.
2009
.
T-cell modulation combined with intratumoral CpG cures lymphoma in a mouse model without the need for chemotherapy.
Blood
113
:
3546
3552
.
38
Li
J.
,
Song
W.
,
Czerwinski
D. K.
,
Varghese
B.
,
Uematsu
S.
,
Akira
S.
,
Krieg
A. M.
,
Levy
R.
.
2007
.
Lymphoma immunotherapy with CpG oligodeoxynucleotides requires TLR9 either in the host or in the tumor itself.
J. Immunol.
179
:
2493
2500
.
39
Meng
Y.
,
Carpentier
A. F.
,
Chen
L.
,
Boisserie
G.
,
Simon
J. M.
,
Mazeron
J. J.
,
Delattre
J. Y.
.
2005
.
Successful combination of local CpG-ODN and radiotherapy in malignant glioma.
Int. J. Cancer
116
:
992
997
.
40
Brody
J. D.
,
Ai
W. Z.
,
Czerwinski
D. K.
,
Torchia
J. A.
,
Levy
M.
,
Advani
R. H.
,
Kim
Y. H.
,
Hoppe
R. T.
,
Knox
S. J.
,
Shin
L. K.
, et al
.
2010
.
In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study.
J. Clin. Oncol.
28
:
4324
4332
.
41
Daud
A. I.
,
DeConti
R. C.
,
Andrews
S.
,
Urbas
P.
,
Riker
A. I.
,
Sondak
V. K.
,
Munster
P. N.
,
Sullivan
D. M.
,
Ugen
K. E.
,
Messina
J. L.
,
Heller
R.
.
2008
.
Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma.
J. Clin. Oncol.
26
:
5896
5903
.
42
Rehwinkel
J.
,
Reis e Sousa
C.
.
2010
.
RIGorous detection: exposing virus through RNA sensing.
Science
327
:
284
286
.
43
Alexopoulou
L.
,
Holt
A. C.
,
Medzhitov
R.
,
Flavell
R. A.
.
2001
.
Recognition of double-stranded RNA and activation of NF-kappaB by toll-like receptor 3.
Nature
413
:
732
738
.
44
Amos
S. M.
,
Pegram
H. J.
,
Westwood
J. A.
,
John
L. B.
,
Devaud
C.
,
Clarke
C. J.
,
Restifo
N. P.
,
Smyth
M. J.
,
Darcy
P. K.
,
Kershaw
M. H.
.
2011
.
Adoptive immunotherapy combined with intratumoral TLR agonist delivery eradicates established melanoma in mice.
Cancer Immunol. Immunother.
60
:
671
683
.
45
Bald
T.
,
Landsberg
J.
,
Lopez-Ramos
D.
,
Renn
M.
,
Glodde
N.
,
Jansen
P.
,
Gaffal
E.
,
Steitz
J.
,
Tolba
R.
,
Kalinke
U.
, et al
.
2014
.
Immune cell-poor melanomas benefit from PD-1 blockade after targeted type I IFN activation.
Cancer Discov.
4
:
674
687
.
46
Salazar
A. M.
,
Erlich
R. B.
,
Mark
A.
,
Bhardwaj
N.
,
Herberman
R. B.
.
2014
.
Therapeutic in situ autovaccination against solid cancers with intratumoral poly-ICLC: case report, hypothesis, and clinical trial.
Cancer Immunol. Res.
2
:
720
724
.
47
Tormo
D.
,
Checińska
A.
,
Alonso-Curbelo
D.
,
Pérez-Guijarro
E.
,
Cañón
E.
,
Riveiro-Falkenbach
E.
,
Calvo
T. G.
,
Larribere
L.
,
Megías
D.
,
Mulero
F.
, et al
.
2009
.
Targeted activation of innate immunity for therapeutic induction of autophagy and apoptosis in melanoma cells.
Cancer Cell
16
:
103
114
.
48
Jelinek
I.
,
Leonard
J. N.
,
Price
G. E.
,
Brown
K. N.
,
Meyer-Manlapat
A.
,
Goldsmith
P. K.
,
Wang
Y.
,
Venzon
D.
,
Epstein
S. L.
,
Segal
D. M.
.
2011
.
TLR3-specific double-stranded RNA oligonucleotide adjuvants induce dendritic cell cross-presentation, CTL responses, and antiviral protection.
J. Immunol.
186
:
2422
2429
.
49
Sidky
Y. A.
,
Borden
E. C.
,
Weeks
C. E.
,
Reiter
M. J.
,
Hatcher
J. F.
,
Bryan
G. T.
.
1992
.
Inhibition of murine tumor growth by an interferon-inducing imidazoquinolinamine.
Cancer Res.
52
:
3528
3533
.
50
Ahonen
C. L.
,
Gibson
S. J.
,
Smith
R. M.
,
Pederson
L. K.
,
Lindh
J. M.
,
Tomai
M. A.
,
Vasilakos
J. P.
.
1999
.
Dendritic cell maturation and subsequent enhanced T cell stimulation induced with the novel synthetic immune response modifier R-848.
Cell. Immunol.
197
:
62
72
.
51
Smyth
E. C.
,
Flavin
M.
,
Pulitzer
M. P.
,
Gardner
G. J.
,
Costantino
P. D.
,
Chi
D. S.
,
Bogatch
K.
,
Chapman
P. B.
,
Wolchok
J. D.
,
Schwartz
G. K.
,
Carvajal
R. D.
.
2011
.
Treatment of locally recurrent mucosal melanoma with topical imiquimod.
J. Clin. Oncol.
29
:
e809
e811
.
52
Redondo
P.
,
del Olmo
J.
,
López-Diaz de Cerio
A.
,
Inoges
S.
,
Marquina
M.
,
Melero
I.
,
Bendandi
M.
.
2007
.
Imiquimod enhances the systemic immunity attained by local cryosurgery destruction of melanoma lesions.
J. Invest. Dermatol.
127
:
1673
1680
.
53
Dewan
M. Z.
,
Vanpouille-Box
C.
,
Kawashima
N.
,
DiNapoli
S.
,
Babb
J. S.
,
Formenti
S. C.
,
Adams
S.
,
Demaria
S.
.
2012
.
Synergy of topical toll-like receptor 7 agonist with radiation and low-dose cyclophosphamide in a mouse model of cutaneous breast cancer.
Clin. Cancer Res.
18
:
6668
6678
.
54
Adams
S.
,
Kozhaya
L.
,
Martiniuk
F.
,
Meng
T. C.
,
Chiriboga
L.
,
Liebes
L.
,
Hochman
T.
,
Shuman
N.
,
Axelrod
D.
,
Speyer
J.
, et al
.
2012
.
Topical TLR7 agonist imiquimod can induce immune-mediated rejection of skin metastases in patients with breast cancer.
Clin. Cancer Res.
18
:
6748
6757
.
55
Corrales
L.
,
Glickman
L. H.
,
McWhirter
S. M.
,
Kanne
D. B.
,
Sivick
K. E.
,
Katibah
G. E.
,
Woo
S. R.
,
Lemmens
E.
,
Banda
T.
,
Leong
J. J.
, et al
.
2015
.
Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity.
Cell Rep.
11
:
1018
1030
.
56
Ablasser
A.
,
Goldeck
M.
,
Cavlar
T.
,
Deimling
T.
,
Witte
G.
,
Röhl
I.
,
Hopfner
K. P.
,
Ludwig
J.
,
Hornung
V.
.
2013
.
cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING.
Nature
498
:
380
384
.
57
Zhang
X.
,
Shi
H.
,
Wu
J.
,
Zhang
X.
,
Sun
L.
,
Chen
C.
,
Chen
Z. J.
.
2013
.
Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING.
Mol. Cell
51
:
226
235
.
58
Deng
L.
,
Liang
H.
,
Xu
M.
,
Yang
X.
,
Burnette
B.
,
Arina
A.
,
Li
X. D.
,
Mauceri
H.
,
Beckett
M.
,
Darga
T.
, et al
.
2014
.
STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors.
Immunity
41
:
843
852
.
59
Woo
S. R.
,
Fuertes
M. B.
,
Corrales
L.
,
Spranger
S.
,
Furdyna
M. J.
,
Leung
M. Y.
,
Duggan
R.
,
Wang
Y.
,
Barber
G. N.
,
Fitzgerald
K. A.
, et al
.
2014
.
STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. [Published erratum appears in 2015 Immunity 42: 199.]
Immunity
41
:
830
842
.
60
Lichty
B. D.
,
Breitbach
C. J.
,
Stojdl
D. F.
,
Bell
J. C.
.
2014
.
Going viral with cancer immunotherapy.
Nat. Rev. Cancer
14
:
559
567
.
61
Prestwich
R. J.
,
Harrington
K. J.
,
Pandha
H. S.
,
Vile
R. G.
,
Melcher
A. A.
,
Errington
F.
.
2008
.
Oncolytic viruses: a novel form of immunotherapy.
Expert Rev. Anticancer Ther.
8
:
1581
1588
.
62
Smerdou
C.
,
Ochoa
C.
,
Quetglas
J. I.
,
Fontanellas
A.
,
Gonzalez-Aseguinolaza
G.
,
Vile
R. G.
,
Melero
I.
.
2010
.
Immunology and gene therapy: shoulder to shoulder into the fray.
Mol. Ther.
18
:
456
459
.
63
Goins
W. F.
,
Huang
S.
,
Cohen
J. B.
,
Glorioso
J. C.
.
2014
.
Engineering HSV-1 vectors for gene therapy.
Methods Mol. Biol.
1144
:
63
79
.
64
Kim
J. H.
,
Oh
J. Y.
,
Park
B. H.
,
Lee
D. E.
,
Kim
J. S.
,
Park
H. E.
,
Roh
M. S.
,
Je
J. E.
,
Yoon
J. H.
,
Thorne
S. H.
,
Kirn
D.
,
Hwang
T. H.
.
2006
.
Systemic armed oncolytic and immunologic therapy for cancer with JX-594, a targeted poxvirus expressing GM-CSF.
Mol. Ther.
14
:
361
370
.
65
Rodriguez-Madoz
J. R.
,
Prieto
J.
,
Smerdou
C.
.
2005
.
Semliki forest virus vectors engineered to express higher IL-12 levels induce efficient elimination of murine colon adenocarcinomas.
Mol. Ther.
12
:
153
163
.
66
Sangro
B.
,
Mazzolini
G.
,
Ruiz
J.
,
Herraiz
M.
,
Quiroga
J.
,
Herrero
I.
,
Benito
A.
,
Larrache
J.
,
Pueyo
J.
,
Subtil
J. C.
, et al
.
2004
.
Phase I trial of intratumoral injection of an adenovirus encoding interleukin-12 for advanced digestive tumors.
J. Clin. Oncol.
22
:
1389
1397
.
67
Agrawal
N.
,
Bettegowda
C.
,
Cheong
I.
,
Geschwind
J. F.
,
Drake
C. G.
,
Hipkiss
E. L.
,
Tatsumi
M.
,
Dang
L. H.
,
Diaz
L. A.
 Jr.
,
Pomper
M.
, et al
.
2004
.
Bacteriolytic therapy can generate a potent immune response against experimental tumors.
Proc. Natl. Acad. Sci. USA
101
:
15172
15177
.
68
Barajas
M.
,
Mazzolini
G.
,
Genové
G.
,
Bilbao
R.
,
Narvaiza
I.
,
Schmitz
V.
,
Sangro
B.
,
Melero
I.
,
Qian
C.
,
Prieto
J.
.
2001
.
Gene therapy of orthotopic hepatocellular carcinoma in rats using adenovirus coding for interleukin 12.
Hepatology
33
:
52
61
.
69
Quetglas
J. I.
,
Ruiz-Guillen
M.
,
Aranda
A.
,
Casales
E.
,
Bezunartea
J.
,
Smerdou
C.
.
2010
.
Alphavirus vectors for cancer therapy.
Virus Res.
153
:
179
196
.
70
Ott
P. A.
,
Hodi
F. S.
.
2016
.
Talimogene laherparepvec for the treatment of advanced melanoma.
Clin. Cancer Res.
22
:
3127
3131
.
71
Lorence
R. M.
,
Reichard
K. W.
,
Katubig
B. B.
,
Reyes
H. M.
,
Phuangsab
A.
,
Mitchell
B. R.
,
Cascino
C. J.
,
Walter
R. J.
,
Peeples
M. E.
.
1994
.
Complete regression of human neuroblastoma xenografts in athymic mice after local Newcastle disease virus therapy.
J. Natl. Cancer Inst.
86
:
1228
1233
.
72
Nistal-Villan
E.
,
Bunuales
M.
,
Poutou
J.
,
Gonzalez-Aparicio
M.
,
Bravo-Perez
C.
,
Quetglas
J. I.
,
Carte
B.
,
Gonzalez-Aseguinolaza
G.
,
Prieto
J.
,
Larrea
E.
,
Hernandez-Alcoceba
R.
.
2015
.
Enhanced therapeutic effect using sequential administration of antigenically distinct oncolytic viruses expressing oncostatin M in a Syrian hamster orthotopic pancreatic cancer model.
Mol. Cancer
14
:
210
.
73
Zamarin
D.
,
Holmgaard
R. B.
,
Subudhi
S. K.
,
Park
J. S.
,
Mansour
M.
,
Palese
P.
,
Merghoub
T.
,
Wolchok
J. D.
,
Allison
J. P.
.
2014
.
Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy.
Sci. Transl. Med.
6
:
226ra32
.
74
Lundstrom
K.
2009
.
Alphaviruses in gene therapy.
Viruses
1
:
13
25
.
75
Melero
I.
,
Quetglas
J. I.
,
Reboredo
M.
,
Dubrot
J.
,
Rodriguez-Madoz
J. R.
,
Mancheño
U.
,
Casales
E.
,
Riezu-Boj
J. I.
,
Ruiz-Guillen
M.
,
Ochoa
M. C.
, et al
.
2015
.
Strict requirement for vector-induced type I interferon in efficacious antitumor responses to virally encoded IL-12.
Cancer Res.
75
:
497
507
.
76
Andtbacka
R. H.
,
Kaufman
H. L.
,
Collichio
F.
,
Amatruda
T.
,
Senzer
N.
,
Chesney
J.
,
Delman
K. A.
,
Spitler
L. E.
,
Puzanov
I.
,
Agarwala
S. S.
, et al
.
2015
.
Talimogene laherparepvec improves durable response rate in patients with advanced melanoma.
J. Clin. Oncol.
33
:
2780
2788
.
77
Narvaiza
I.
,
Mazzolini
G.
,
Barajas
M.
,
Duarte
M.
,
Zaratiegui
M.
,
Qian
C.
,
Melero
I.
,
Prieto
J.
.
2000
.
Intratumoral coinjection of two adenoviruses, one encoding the chemokine IFN-gamma-inducible protein-10 and another encoding IL-12, results in marked antitumoral synergy.
J. Immunol.
164
:
3112
3122
.
78
Park
B. H.
,
Hwang
T.
,
Liu
T. C.
,
Sze
D. Y.
,
Kim
J. S.
,
Kwon
H. C.
,
Oh
S. Y.
,
Han
S. Y.
,
Yoon
J. H.
,
Hong
S. H.
, et al
.
2008
.
Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial.
Lancet Oncol.
9
:
533
542
.
79
Quetglas
J. I.
,
Labiano
S.
,
Aznar
M. A.
,
Bolaños
E.
,
Azpilikueta
A.
,
Rodriguez
I.
,
Casales
E.
,
Sánchez-Paulete
A. R.
,
Segura
V.
,
Smerdou
C.
,
Melero
I.
.
2015
.
Virotherapy with a Semliki forest virus-based vector encoding IL12 synergizes with PD-1/PD-L1 blockade.
Cancer Immunol. Res.
3
:
449
454
.
80
Quetglas
J. I.
,
Dubrot
J.
,
Bezunartea
J.
,
Sanmamed
M. F.
,
Hervas-Stubbs
S.
,
Smerdou
C.
,
Melero
I.
.
2012
.
Immunotherapeutic synergy between anti-CD137 mAb and intratumoral administration of a cytopathic Semliki Forest virus encoding IL-12.
Mol. Ther.
20
:
1664
1675
.
81
John
L. B.
,
Howland
L. J.
,
Flynn
J. K.
,
West
A. C.
,
Devaud
C.
,
Duong
C. P.
,
Stewart
T. J.
,
Westwood
J. A.
,
Guo
Z. S.
,
Bartlett
D. L.
, et al
.
2012
.
Oncolytic virus and anti-4-1BB combination therapy elicits strong antitumor immunity against established cancer.
Cancer Res.
72
:
1651
1660
.
82
Puzanov
I.
,
Milhem
M. M.
,
Minor
D.
,
Hamid
O.
,
Li
A.
,
Chen
L.
,
Chastain
M.
,
Gorski
K. S.
,
Anderson
A.
,
Chou
J.
, et al
.
2016
.
Talimogene laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB-IV melanoma.
J. Clin. Oncol.
34
:
2619
2626
.
83
Breitbach
C. J.
,
Moon
A.
,
Burke
J.
,
Hwang
T. H.
,
Kirn
D. H.
.
2015
.
A phase 2, open-label, randomized study of Pexa-Vec (JX-594) administered by intratumoral injection in patients with unresectable primary hepatocellular carcinoma.
Methods Mol. Biol.
1317
:
343
357
.
84
Cripe
T. P.
,
Ngo
M. C.
,
Geller
J. I.
,
Louis
C. U.
,
Currier
M. A.
,
Racadio
J. M.
,
Towbin
A. J.
,
Rooney
C. M.
,
Pelusio
A.
,
Moon
A.
, et al
.
2015
.
Phase 1 study of intratumoral Pexa-Vec (JX-594), an oncolytic and immunotherapeutic vaccinia virus, in pediatric cancer patients.
Mol. Ther.
23
:
602
608
.
85
Huang
P. I.
,
Chang
J. F.
,
Kirn
D. H.
,
Liu
T. C.
.
2009
.
Targeted genetic and viral therapy for advanced head and neck cancers.
Drug Discov. Today
14
:
570
578
.
86
Liu
T. C.
,
Thorne
S. H.
,
Kirn
D. H.
.
2008
.
Oncolytic adenoviruses for cancer gene therapy.
Methods Mol. Biol.
433
:
243
258
.
87
Huarte
E.
,
Larrea
E.
,
Hernandez-Alcoceba
R.
,
Alfaro
C.
,
Murillo
O.
,
Arina
A.
,
Tirapu
I.
,
Azpilicueta
A.
,
Hervas-Stubbs
S.
,
Bortolanza
S.
, et al
.
2006
.
Recombinant adenoviral vectors turn on the type I interferon system without inhibition of transgene expression and viral replication.
Mol. Ther.
14
:
129
138
.
88
Kawai
T.
,
Akira
S.
.
2011
.
Toll-like receptors and their cross-talk with other innate receptors in infection and immunity.
Immunity
34
:
637
650
.
89
Takeuchi
O.
,
Akira
S.
.
2008
.
MDA5/RIG-I and virus recognition.
Curr. Opin. Immunol.
20
:
17
22
.
90
Sharma
P.
,
Allison
J. P.
.
2015
.
The future of immune checkpoint therapy.
Science
348
:
56
61
.
91
Topalian
S. L.
,
Drake
C. G.
,
Pardoll
D. M.
.
2015
.
Immune checkpoint blockade: a common denominator approach to cancer therapy.
Cancer Cell
27
:
450
461
.
92
Kohrt
H. E.
,
Tumeh
P. C.
,
Benson
D.
,
Bhardwaj
N.
,
Brody
J.
,
Formenti
S.
,
Fox
B. A.
,
Galon
J.
,
June
C. H.
,
Kalos
M.
, et al
Cancer Immunotherapy Trials Network (CITN)
.
2016
.
Immunodynamics: a cancer immunotherapy trials network review of immune monitoring in immuno-oncology clinical trials.
J. Immunother. Cancer
4
:
15
.
93
Das
R.
,
Verma
R.
,
Sznol
M.
,
Boddupalli
C. S.
,
Gettinger
S. N.
,
Kluger
H.
,
Callahan
M.
,
Wolchok
J. D.
,
Halaban
R.
,
Dhodapkar
M. V.
,
Dhodapkar
K. M.
.
2015
.
Combination therapy with anti-CTLA-4 and anti-PD-1 leads to distinct immunologic changes in vivo.
J. Immunol.
194
:
950
959
.
94
Melief
C. J.
2012
.
Selective activation of oxygen-deprived tumor-infiltrating lymphocytes through local intratumoral delivery of CD137 monoclonal antibodies.
Cancer Discov.
2
:
586
587
.
95
Fransen
M. F.
,
van der Sluis
T. C.
,
Ossendorp
F.
,
Arens
R.
,
Melief
C. J.
.
2013
.
Controlled local delivery of CTLA-4 blocking antibody induces CD8+ T cell-dependent tumor eradication and decreases risk of toxic side effects.
Clin. Cancer Res.
19
:
5381
5389
.
96
Fransen
M. F.
,
Sluijter
M.
,
Morreau
H.
,
Arens
R.
,
Melief
C. J.
.
2011
.
Local activation of CD8 T cells and systemic tumor eradication without toxicity via slow release and local delivery of agonistic CD40 antibody.
Clin. Cancer Res.
17
:
2270
2280
.
97
Fransen
M. F.
,
Cordfunke
R. A.
,
Sluijter
M.
,
van Steenbergen
M. J.
,
Drijfhout
J. W.
,
Ossendorp
F.
,
Hennink
W. E.
,
Melief
C. J.
.
2014
.
Effectiveness of slow-release systems in CD40 agonistic antibody immunotherapy of cancer.
Vaccine
32
:
1654
1660
.
98
Marabelle
A.
,
Kohrt
H.
,
Levy
R.
.
2014
.
New insights into the mechanism of action of immune checkpoint antibodies.
OncoImmunology
3
:
e954869
.
99
Marabelle
A.
,
Kohrt
H.
,
Sagiv-Barfi
I.
,
Ajami
B.
,
Axtell
R. C.
,
Zhou
G.
,
Rajapaksa
R.
,
Green
M. R.
,
Torchia
J.
,
Brody
J.
, et al
.
2013
.
Depleting tumor-specific Tregs at a single site eradicates disseminated tumors.
J. Clin. Invest.
123
:
2447
2463
.
100
Lehmann
S.
,
Perera
R.
,
Grimm
H. P.
,
Sam
J.
,
Colombetti
S.
,
Fauti
T.
,
Fahrni
L.
,
Schaller
T.
,
Freimoser-Grundschober
A.
,
Zielonka
J.
, et al
.
2016
.
In vivo imaging of the activity of CEA TCB, a novel T cell bispecific antibody, reveals specific tumor targeting and fast induction of T cell mediated tumor killing.
Clin. Cancer Res.
22
:
4417
4427
.
101
Palazón
A.
,
Martínez-Forero
I.
,
Teijeira
A.
,
Morales-Kastresana
A.
,
Alfaro
C.
,
Sanmamed
M. F.
,
Perez-Gracia
J. L.
,
Peñuelas
I.
,
Hervás-Stubbs
S.
,
Rouzaut
A.
, et al
.
2012
.
The HIF-1α hypoxia response in tumor-infiltrating T lymphocytes induces functional CD137 (4-1BB) for immunotherapy.
Cancer Discov.
2
:
608
623
.
102
Beatty
G. L.
,
Torigian
D. A.
,
Chiorean
E. G.
,
Saboury
B.
,
Brothers
A.
,
Alavi
A.
,
Troxel
A. B.
,
Sun
W.
,
Teitelbaum
U. R.
,
Vonderheide
R. H.
,
O'Dwyer
P. J.
.
2013
.
A phase I study of an agonist CD40 monoclonal antibody (CP-870,893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma.
Clin. Cancer Res.
19
:
6286
6295
.
103
Dubrot
J.
,
Milheiro
F.
,
Alfaro
C.
,
Palazón
A.
,
Martinez-Forero
I.
,
Perez-Gracia
J. L.
,
Morales-Kastresana
A.
,
Romero-Trevejo
J. L.
,
Ochoa
M. C.
,
Hervás-Stubbs
S.
, et al
.
2010
.
Treatment with anti-CD137 mAbs causes intense accumulations of liver T cells without selective antitumor immunotherapeutic effects in this organ.
Cancer Immunol. Immunother.
59
:
1223
1233
.
104
Nowak
A. K.
,
Cook
A. M.
,
McDonnell
A. M.
,
Millward
M. J.
,
Creaney
J.
,
Francis
R. J.
,
Hasani
A.
,
Segal
A.
,
Musk
A. W.
,
Turlach
B. A.
,
McCoy
M. J.
,
Robinson
B. W.
,
Lake
R. A.
.
2015
.
A phase 1b clinical trial of the CD40-activating antibody CP-870,893 in combination with cisplatin and pemetrexed in malignant pleural mesothelioma.
Ann. Oncol.
26
:
2483
2490
.
105
Vonderheide
R. H.
,
Flaherty
K. T.
,
Khalil
M.
,
Stumacher
M. S.
,
Bajor
D. L.
,
Hutnick
N. A.
,
Sullivan
P.
,
Mahany
J. J.
,
Gallagher
M.
,
Kramer
A.
, et al
.
2007
.
Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody.
J. Clin. Oncol.
25
:
876
883
.
106
Bol
K. F.
,
Schreibelt
G.
,
Gerritsen
W. R.
,
de Vries
I. J.
,
Figdor
C. G.
.
2016
.
Dendritic cell-based immunotherapy: state of the art and beyond.
Clin. Cancer Res.
22
:
1897
1906
.
107
Alfaro
C.
,
Perez-Gracia
J. L.
,
Suarez
N.
,
Rodriguez
J.
,
Fernandez de Sanmamed
M.
,
Sangro
B.
,
Martin-Algarra
S.
,
Calvo
A.
,
Redrado
M.
,
Agliano
A.
, et al
.
2011
.
Pilot clinical trial of type 1 dendritic cells loaded with autologous tumor lysates combined with GM-CSF, pegylated IFN, and cyclophosphamide for metastatic cancer patients.
J. Immunol.
187
:
6130
6142
.
108
Bedrosian
I.
,
Mick
R.
,
Xu
S.
,
Nisenbaum
H.
,
Faries
M.
,
Zhang
P.
,
Cohen
P. A.
,
Koski
G.
,
Czerniecki
B. J.
.
2003
.
Intranodal administration of peptide-pulsed mature dendritic cell vaccines results in superior CD8+ T cell function in melanoma patients.
J. Clin. Oncol.
21
:
3826
3835
.
109
Gilliet
M.
,
Kleinhans
M.
,
Lantelme
E.
,
Schadendorf
D.
,
Burg
G.
,
Nestle
F. O.
.
2003
.
Intranodal injection of semimature monocyte-derived dendritic cells induces T helper type 1 responses to protein neoantigen.
Blood
102
:
36
42
.
110
Melero
I.
,
Duarte
M.
,
Ruiz
J.
,
Sangro
B.
,
Galofré
J.
,
Mazzolini
G.
,
Bustos
M.
,
Qian
C.
,
Prieto
J.
.
1999
.
Intratumoral injection of bone-marrow derived dendritic cells engineered to produce interleukin-12 induces complete regression of established murine transplantable colon adenocarcinomas.
Gene Ther.
6
:
1779
1784
.
111
Nishioka
Y.
,
Hirao
M.
,
Robbins
P. D.
,
Lotze
M. T.
,
Tahara
H.
.
1999
.
Induction of systemic and therapeutic antitumor immunity using intratumoral injection of dendritic cells genetically modified to express interleukin 12.
Cancer Res.
59
:
4035
4041
.
112
Van Lint
S.
,
Renmans
D.
,
Broos
K.
,
Goethals
L.
,
Maenhout
S.
,
Benteyn
D.
,
Goyvaerts
C.
,
Du Four
S.
,
Van der Jeught
K.
,
Bialkowski
L.
, et al
.
2016
.
Intratumoral delivery of TriMix mRNA results in T cell activation by cross-presenting dendritic cells.
Cancer Immunol. Res.
4
:
146
156
.
113
Mazzolini
G.
,
Alfaro
C.
,
Sangro
B.
,
Feijoó
E.
,
Ruiz
J.
,
Benito
A.
,
Tirapu
I.
,
Arina
A.
,
Sola
J.
,
Herraiz
M.
, et al
.
2005
.
Intratumoral injection of dendritic cells engineered to secrete interleukin-12 by recombinant adenovirus in patients with metastatic gastrointestinal carcinomas.
J. Clin. Oncol.
23
:
999
1010
.
114
Alfaro
C.
,
Suárez
N.
,
Martínez-Forero
I.
,
Palazón
A.
,
Rouzaut
A.
,
Solano
S.
,
Feijoo
E.
,
Gúrpide
A.
,
Bolaños
E.
,
Erro
L.
, et al
.
2011
.
Carcinoma-derived interleukin-8 disorients dendritic cell migration without impairing T cell stimulation.
PLoS One
6
:
e17922
.
115
Melero
I.
,
Arina
A.
,
Murillo
O.
,
Dubrot
J.
,
Alfaro
C.
,
Perez-Gracia
J. L.
,
Bendandi
M.
,
Hervas-Stubbs
S.
.
2006
.
Immunogenic cell death and cross-priming are reaching the clinical immunotherapy arena.
Clin. Cancer Res.
12
:
2385
2389
.
116
Spranger
S.
,
Bao
R.
,
Gajewski
T. F.
.
2015
.
Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity.
Nature
523
:
231
235
.
117
Melero
I.
,
Vile
R. G.
,
Colombo
M. P.
.
2000
.
Feeding dendritic cells with tumor antigens: self-service buffet or à la carte?
Gene Ther.
7
:
1167
1170
.
118
Chi
K. H.
,
Liu
S. J.
,
Li
C. P.
,
Kuo
H. P.
,
Wang
Y. S.
,
Chao
Y.
,
Hsieh
S. L.
.
2005
.
Combination of conformal radiotherapy and intratumoral injection of adoptive dendritic cell immunotherapy in refractory hepatoma.
J. Immunother.
28
:
129
135
.
119
Breton
G.
,
Lee
J.
,
Zhou
Y. J.
,
Schreiber
J. J.
,
Keler
T.
,
Puhr
S.
,
Anandasabapathy
N.
,
Schlesinger
S.
,
Caskey
M.
,
Liu
K.
,
Nussenzweig
M. C.
.
2015
.
Circulating precursors of human CD1c+ and CD141+ dendritic cells.
J. Exp. Med.
212
:
401
413
.
120
Gorelik
L.
,
Flavell
R. A.
.
2002
.
Transforming growth factor-beta in T cell biology.
Nat. Rev. Immunol.
2
:
46
53
.
121
Li
M. O.
,
Wan
Y. Y.
,
Sanjabi
S.
,
Robertson
A. K.
,
Flavell
R. A.
.
2006
.
Transforming growth factor-beta regulation of immune responses.
Annu. Rev. Immunol.
24
:
99
146
.
122
Maus
M. V.
,
June
C. H.
.
2016
.
Making better chimeric antigen receptors for adoptive T cell therapy.
Clin. Cancer Res.
22
:
1875
1884
.
123
Rosenberg
S. A.
,
Restifo
N. P.
.
2015
.
Adoptive cell transfer as personalized immunotherapy for human cancer.
Science
348
:
62
68
.
124
Melero
I.
,
Rouzaut
A.
,
Motz
G. T.
,
Coukos
G.
.
2014
.
T cell and NK cell infiltration into solid tumors: a key limiting factor for efficacious cancer immunotherapy.
Cancer Discov.
4
:
522
526
.
125
Arina
A.
,
Murillo
O.
,
Hervás-Stubbs
S.
,
Azpilikueta
A.
,
Dubrot
J.
,
Tirapu
I.
,
Huarte
E.
,
Alfaro
C.
,
Pérez-Gracia
J. L.
,
González-Aseguinolaza
G.
, et al
.
2007
.
The combined actions of NK and T lymphocytes are necessary to reject an EGFP+ mesenchymal tumor through mechanisms dependent on NKG2D and IFN gamma.
Int. J. Cancer
121
:
1282
1295
.
126
Golden
E. B.
,
Pellicciotta
I.
,
Demaria
S.
,
Barcellos-Hoff
M. H.
,
Formenti
S. C.
.
2012
.
The convergence of radiation and immunogenic cell death signaling pathways.
Front. Oncol.
2
:
88
.
127
Kepp
O.
,
Senovilla
L.
,
Vitale
I.
,
Vacchelli
E.
,
Adjemian
S.
,
Agostinis
P.
,
Apetoh
L.
,
Aranda
F.
,
Barnaba
V.
,
Bloy
N.
, et al
.
2014
.
Consensus guidelines for the detection of immunogenic cell death.
OncoImmunology
3
:
e955691
.
128
Antoniades
J.
,
Brady
L. W.
,
Lightfoot
D. A.
.
1977
.
Lymphangiographic demonstration of the abscopal effect in patients with malignant lymphomas.
Int. J. Radiat. Oncol. Biol. Phys.
2
:
141
147
.
129
Deng
L.
,
Liang
H.
,
Burnette
B.
,
Beckett
M.
,
Darga
T.
,
Weichselbaum
R. R.
,
Fu
Y. X.
.
2014
.
Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice.
J. Clin. Invest.
124
:
687
695
.
130
Ruocco
M. G.
,
Pilones
K. A.
,
Kawashima
N.
,
Cammer
M.
,
Huang
J.
,
Babb
J. S.
,
Liu
M.
,
Formenti
S. C.
,
Dustin
M. L.
,
Demaria
S.
.
2012
.
Suppressing T cell motility induced by anti-CTLA-4 monotherapy improves antitumor effects.
J. Clin. Invest.
122
:
3718
3730
.
131
Twyman-Saint Victor
C.
,
Rech
A. J.
,
Maity
A.
,
Rengan
R.
,
Pauken
K. E.
,
Stelekati
E.
,
Benci
J. L.
,
Xu
B.
,
Dada
H.
,
Odorizzi
P. M.
, et al
.
2015
.
Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer.
Nature
520
:
373
377
.
132
Postow
M. A.
,
Callahan
M. K.
,
Barker
C. A.
,
Yamada
Y.
,
Yuan
J.
,
Kitano
S.
,
Mu
Z.
,
Rasalan
T.
,
Adamow
M.
,
Ritter
E.
, et al
.
2012
.
Immunologic correlates of the abscopal effect in a patient with melanoma.
N. Engl. J. Med.
366
:
925
931
.
133
Shi
L.
,
Chen
L.
,
Wu
C.
,
Zhu
Y.
,
Xu
B.
,
Zheng
X.
,
Sun
M.
,
Wen
W.
,
Dai
X.
,
Yang
M.
,
Lv
Q.
,
Lu
B.
,
Jiang
J.
.
2016
.
PD-1 blockade boosts radiofrequency ablation-elicited adaptive immune responses against tumor.
Clin. Cancer Res.
22
:
1173
1184
.
134
Mozzillo
N.
,
Simeone
E.
,
Benedetto
L.
,
Curvietto
M.
,
Giannarelli
D.
,
Gentilcore
G.
,
Camerlingo
R.
,
Capone
M.
,
Madonna
G.
,
Festino
L.
, et al
.
2015
.
Assessing a novel immuno-oncology-based combination therapy: ipilimumab plus electrochemotherapy.
OncoImmunology
4
:
e1008842
.
135
Korangy
F.
,
ElGindi
M.
,
Pratt
D.
,
Venzon
D.
,
Duffy
A.
,
Makarova-Rusher
O.
,
Kerkar
S.
,
Kleiner
D.
,
Wood
B.
,
Greten
T.
.
2016
.
Tremelimimab activates CD4 and CD8+T cells in patients with hepatocellular carcinoma.
Cancer Immunol.
Res. 4. (1 Suppl):Abstract nr A195
.
136
Barker
H. E.
,
Paget
J. T.
,
Khan
A. A.
,
Harrington
K. J.
.
2015
.
The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence.
Nat. Rev. Cancer
15
:
409
425
.
137
Sandoval
F.
,
Terme
M.
,
Nizard
M.
,
Badoual
C.
,
Bureau
M. F.
,
Freyburger
L.
,
Clement
O.
,
Marcheteau
E.
,
Gey
A.
,
Fraisse
G.
, et al
.
2013
.
Mucosal imprinting of vaccine-induced CD8⁺ T cells is crucial to inhibit the growth of mucosal tumors.
Sci. Transl. Med.
5
:
172ra20
.
138
Mikhak
Z.
,
Strassner
J. P.
,
Luster
A. D.
.
2013
.
Lung dendritic cells imprint T cell lung homing and promote lung immunity through the chemokine receptor CCR4.
J. Exp. Med.
210
:
1855
1869
.
139
Kaufman
H. L.
,
Amatruda
T.
,
Reid
T.
,
Gonzalez
R.
,
Glaspy
J.
,
Whitman
E.
,
Harrington
K.
,
Nemunaitis
J.
,
Zloza
A.
,
Wolf
M.
,
Senzer
N. N.
.
2016
.
Systemic versus local responses in melanoma patients treated with talimogene laherparepvec from a multi-institutional phase II study.
J. Immunother. Cancer
4
:
12
.
140
Melero
I.
,
Berman
D. M.
,
Aznar
M. A.
,
Korman
A. J.
,
Pérez Gracia
J. L.
,
Haanen
J.
.
2015
.
Evolving synergistic combinations of targeted immunotherapies to combat cancer.
Nat. Rev. Cancer
15
:
457
472
.
141
Whiteside
T. L.
,
Demaria
S.
,
Rodriguez-Ruiz
M. E.
,
Zarour
H. M.
,
Melero
I.
.
2016
.
Emerging opportunities and challenges in cancer immunotherapy.
Clin. Cancer Res.
22
:
1845
1855
.
142
Berraondo
P.
,
Ochoa
M. C.
,
Rodriguez-Ruiz
M. E.
,
Minute
L.
,
Lasarte
J. J.
,
Melero
I.
.
2016
.
Immunostimulatory monoclonal antibodies and immunomodulation: harvesting the crop.
Cancer Res.
76
:
2863
2867
.

I.M. has served as a consultant for Bristol-Myers Squibb, Merck-Serono, Novartis, Eli Lilly and Company, AstraZeneca, Genmab, Alligator Bioscience, and Tusk Therapeutics. The other authors have no financial conflicts of interest.