Staphylococcus aureus causes a wide range of diseases that together embody a significant public health burden. Aided by metabolic flexibility and a large virulence repertoire, S. aureus has the remarkable ability to hematogenously disseminate and infect various tissues, including skin, lung, heart, and bone, among others. The hallmark lesions of invasive staphylococcal infections, abscesses, simultaneously denote the powerful innate immune responses to tissue invasion as well as the ability of staphylococci to persist within these lesions. In this article, we review the innate immune responses to S. aureus during infection of skin and bone, which serve as paradigms for soft tissue and bone disease, respectively.

Staphylococcus aureus is a Gram-positive bacterium that colonizes ∼30% of the population (1). Despite this relatively innocuous lifestyle, S. aureus is capable of breaching tissue barriers, circulating through the bloodstream, and infecting nearly every organ system in the body. S. aureus is the most common cause of bacterial skin and soft tissue infections in the United States (2, 3). Other infection sites include but are not limited to bone, lung, kidney, and heart. A critical tenant in the battle against staphylococcal infections is to understand host risk factors, including those that parse out individuals capable of local control of infection versus those that progress to invasive disease. A better understanding of the innate immune responses to S. aureus will also aid the development of new adjunctive therapies to alleviate the morbidity of staphylococcal disease.

In the early 1880s, Dr. Ogston (4, 5) examined purulent material from patients with soft tissue infection, noting microscopic “masses or clusters, like the roe of a fish, to which I gave the name “‘staphylococcus.’” Following Ogston’s landmark discovery, it is clear that S. aureus is the pre-eminent bacterial pathogen causing purulent infections. Although much is known regarding the architecture of staphylococcal abscesses and the cellular contributors to pyogenic immune responses (6), many questions remain unanswered. In the sections that follow, we review the key events underlying effective recognition and microbiologic control of S. aureus skin and bone infection.

Skin is a complex organ that performs vital functions, including immune responses, hormone and vitamin production, and formation of a protective mechanical and chemical barrier (7). Skin is composed of an outer epidermis overlying an inner dermis, separated by a basement membrane. The physical and biochemical barriers are derived from the association of keratinocytes (KCs) with the products of sweat, lipid, and antimicrobial peptides (7). The epidermis is formed by KCs in different maturation stages, Langerhans cells (LCs), and T cells. The dermis contains extracellular matrix components, such as connective tissues, collagen, and elastin fibers (8). The fibers provide a structural framework to host blood vessels, adipocytes, fibroblasts, skin-resident macrophages, dermal dendritic cells, mast cells, T and B lymphocytes, plasma cells, and NK cells (8). As such, resident immune cells are abundant in the skin, and these cells are all involved in the control of S. aureus infection by influencing different arms of the immune response (9, 10).

KCs, together with the other resident immune cells in the skin, participate in the recognition and response to invading pathogens (10, 11). KCs are typically the first cells that encounter pathogens, and recognize pathogen-associated molecular patterns (PAMPs) via different pattern-recognition receptors (PRRs), such as TLRs, nucleotide-binding oligomerization domain (NOD)-1 and -2, and the scavenger receptors CD36 and MARCO (1012). Signaling through these receptors induces activation of transcription factors, such as NF-κB, AP1, and CREB to generate cytokines (IL-1α, IL-1β, IFN-γ, TNF-α and IL-17A, IL-17F, and IL-22), chemokines (CXCL1, CXCL2, CXCL9, CXCL10, CXCL11, CCL27, and CCL20), and antimicrobial effectors, such as antimicrobial peptides and inducible NO synthase (7, 12, 13) (Fig. 1A; left).

FIGURE 1.

Innate immune responses to S. aureus during skin and bone infection. (A) Left panel, S. aureus infects skin after breaching the epithelial layers. KCs and skin-resident macrophages produce inflammatory mediators that promote neutrophil responses. Middle panel, Neutrophils are recruited to the skin where they phagocytose bacteria, undergo degranulation, and produce extracellular traps that aid in bacterial killing. Right panel, S. aureus infection is contained by abscess formation. Live and dead neutrophils and bacteria are found within the abscess. The abscess becomes encapsulated with fibrous material and surrounded by macrophages. (B) Bone remodeling activities of osteoblasts and osteoclasts are altered following interactions between innate immune receptors and S. aureus. In osteoblasts, TLR2 recognition of extracellular S. aureus leads to production of antimicrobial peptides, TLR9 detection of bacterial CpG DNA in the endosome induces an antibacterial ROS response, and NOD2 sensing of cytoplasmic S. aureus occurs following escape from the endosome. The culmination of osteoblastic innate recognition results in production of proinflammatory cytokines, such as TNF-α, IL-1, and IL-6. These cytokines allow osteoblasts to favor increased production of RANKL and decreased release of the RANKL inhibitory cytokine OPG. The increased RANKL/OPG ratio and proinflammatory cytokine production have a net effect to enhance osteoclast differentiation. However, OB activation and the effects of staphylococcal toxins may also result in osteoblast cell death through apoptosis and necrosis. RANKL production allows for enhanced differentiation of osteoclast precursors. Proinflammatory cytokines, such as TNF-α and IL-1, can signal directly onto osteoclast precursors to increase osteoclast survival and bone resorption activity. Osteoclast expression and ligation of TLR2 have been shown to allow for the further differentiation down the osteoclast lineage; however, this occurs only in cells that have first been stimulated with RANKL. Whether or not S. aureus can invade osteoclasts or activate endosomal or cytoplasmic PRRs remains to be determined.

FIGURE 1.

Innate immune responses to S. aureus during skin and bone infection. (A) Left panel, S. aureus infects skin after breaching the epithelial layers. KCs and skin-resident macrophages produce inflammatory mediators that promote neutrophil responses. Middle panel, Neutrophils are recruited to the skin where they phagocytose bacteria, undergo degranulation, and produce extracellular traps that aid in bacterial killing. Right panel, S. aureus infection is contained by abscess formation. Live and dead neutrophils and bacteria are found within the abscess. The abscess becomes encapsulated with fibrous material and surrounded by macrophages. (B) Bone remodeling activities of osteoblasts and osteoclasts are altered following interactions between innate immune receptors and S. aureus. In osteoblasts, TLR2 recognition of extracellular S. aureus leads to production of antimicrobial peptides, TLR9 detection of bacterial CpG DNA in the endosome induces an antibacterial ROS response, and NOD2 sensing of cytoplasmic S. aureus occurs following escape from the endosome. The culmination of osteoblastic innate recognition results in production of proinflammatory cytokines, such as TNF-α, IL-1, and IL-6. These cytokines allow osteoblasts to favor increased production of RANKL and decreased release of the RANKL inhibitory cytokine OPG. The increased RANKL/OPG ratio and proinflammatory cytokine production have a net effect to enhance osteoclast differentiation. However, OB activation and the effects of staphylococcal toxins may also result in osteoblast cell death through apoptosis and necrosis. RANKL production allows for enhanced differentiation of osteoclast precursors. Proinflammatory cytokines, such as TNF-α and IL-1, can signal directly onto osteoclast precursors to increase osteoclast survival and bone resorption activity. Osteoclast expression and ligation of TLR2 have been shown to allow for the further differentiation down the osteoclast lineage; however, this occurs only in cells that have first been stimulated with RANKL. Whether or not S. aureus can invade osteoclasts or activate endosomal or cytoplasmic PRRs remains to be determined.

Close modal

TLR1, -2, and -6 recognize the S. aureus cell wall components, specifically lipopeptides and peptidoglycan. These TLRs use the signaling adapter MyD88 to induce robust and efficient transcriptional programs that lead to inflammatory responses. TLR1, -2, and -6 are involved in many stages of S. aureus infection. Initially, TLR2 on KCs recognize bacteria to produce neutrophil chemoattractants and antimicrobial peptides, such as the cathelicidin LL-37 and defensins, which form pores in bacterial membranes (13). TLR2 is highly expressed on resident macrophages and recruited neutrophils and monocytes, which promptly respond to S. aureus and further stimulate cytokine production and phagocytosis. Therefore, it is expected that TLR2 is critical for both systemic and localized S. aureus infection. Mice deficient in TLR1, -2, -6, and MyD88 are highly susceptible to S. aureus infection in intranasal and i.v. infection, as evidenced by increased bacterial load, poor inflammatory response, and enhanced mortality or morbidity in various models of disease (1418). In skin, the role of TLR2 is controversial. This may be due to differences in virulence of bacterial strains, infectious dose, and measured endpoints. Although Miller et al. (17) has demonstrated that TLR2 is dispensable to control S. aureus infection, Hoebe et al. (19) has shown that TLR2−/− mice are more susceptible to infection. The strain used in the Hoebe et al. article (ALC2906) shows higher lesion sizes and dermonecrosis, whereas the Xen 8.1 parental strain 8325-4 is less virulent in vivo. Distinct bacterial strains express unique virulence factors and toxins that could underlie different TLR2 requirements. Furthermore, the infection inoculum varies between these studies (2.5 × 106 versus 105 CFU). If TLR2 is required for fine tuning the immune response, higher amounts of bacteria (as used by Miller et al.) could override the TLR2 requirement to induce an efficient response, whereas lower doses of the bacteria could require TLR2 to mount a robust immune response.

The intracellular PRRs, NOD1 and NOD2, also detect bacterial peptidoglycan to induce inflammation, antimicrobial peptide production, and phagocytic effector functions. NOD2 recognizes muramyl-dipeptide derived from S. aureus peptidoglycan. NOD2-deficient mice are highly susceptible to S. aureus skin and systemic infections when compared with WT counterparts (2024). Finally, scavenger receptors CD36, SRBII, and MARCO are required for optimal S. aureus skin host defense (2527). Consequently, CD36−/− mice show increased bacterial loads and develop severe α-toxin–induced dermonecrosis (25).

Skin-resident macrophages assist in the initial clearance of S. aureus, and in conjunction with perivascular macrophages, they regulate the recruitment of neutrophils and monocytes to the site of infection (28, 29). Dermal macrophages can phagocytose and kill S. aureus efficiently by producing reactive oxygen and nitrogen species, antimicrobial peptides, and chelating proteins that starve bacteria of essential nutrients (9, 30). Furthermore, dermal macrophages secrete different chemoattractants that provide signals for neutrophil recruitment in a manner dependent on IL-1R and MyD88 (17). These cells are also involved in the clearance of dead cells at the site of infection, which is essential for resolution of disease (9, 30).

Once neutrophils arrive to the site of infection, they ingest S. aureus and attempt to control microbial growth by producing different antimicrobial effectors (see below) (9, 31, 32). Neutrophils are short-lived cells that readily undergo apoptosis and need to be cleared from the site of infection. However, S. aureus produces several toxins, such as α-toxin, γ-hemolysin, Panton–Valentine leukocidin (PVL), and phenol soluble modulins (PSMs) that can hasten neutrophil cell death by inducing necrosis and leading to release of the danger-associated molecular patterns (6, 9, 31, 3336). Danger-associated molecular patterns released during S. aureus infection include IL-33, IL-1α, HGMB1, calprotectin, and ATP (3739). How these different modes of cell death lead to differential outcomes during infection is an active area of study.

Skin LCs and dermal dendritic cells sample their surroundings, capturing Ags before traveling to skin-draining lymph nodes (28, 40). We and others have shown that during S. aureus infection of skin, LCs ingest the bacteria, are activated by PAMPs, and then migrate to draining lymph nodes where LCs elicit S. aureus–specific adaptive responses (41, 42). Although there are several distinct dendritic cell subsets in the skin, their roles in S. aureus skin infection are not well understood (28).

S. aureus can be ingested using receptors that recognize both opsonized and nonopsonized bacteria (9, 33, 43). When coated with opsonins (e.g., C3b and IgG), S. aureus elicits various antimicrobial effector functions (44). Reactive oxygen species (ROS) (such as O2, H2O2, and HOCl) are produced following phagocytosis through the actions of NADPH oxidase and myeloperoxidase and can directly kill bacteria or facilitate further killing by other mechanisms (45, 46). NO is a major reactive nitrogen species that is produced from NO synthase and has antimicrobial and immunomodulatory activity (47). Both genetic deletion and pharmacologic inhibition of NO formation render mice highly susceptible to S. aureus infection (48, 49). However, high concentrations of NO can exert anti-inflammatory effects. High NO levels may therefore predispose to infection by inhibiting cell proliferation, inducing host cell death and preventing phagocyte-induced TNF-α production and Ag presentation. Furthermore, S. aureus uses NO to proliferate and precludes induction of the stress regulon via lactic acid fermentation (50, 51).

Neutrophils kill pathogens by degranulation of toxic components (52). Degranulation induces the secretion of specific granules containing antimicrobial peptides, including LL37 (human), cathelicidin-related antimicrobial peptide (CRAMP, mouse homolog), and defensins. Degranulation also releases azurocidin, cathepsins, lactoferrin, lysozymes, proteinase-3, and elastase (53, 54).

As an additional effector mechanism to control S. aureus infection, neutrophils secrete DNA-rich structures, termed neutrophil extracellular traps (NETs). NETs are produced in a MyD88- and TLR2-dependent mechanism and are necessary for containing S. aureus in the skin to prevent bacteremia (55) (Fig. 1A, middle). NETs limit the spread of pathogens because they are rich in antimicrobial molecules, such as antimicrobial peptides, cathepsins, elastase, histones, and proteases (56). However, S. aureus can destroy NETs, and the degradation product 2'-deoxyadenosine induces apoptosis in macrophages, which increases bacterial survival in the abscess (57).

Abscesses are the hallmark inflammatory lesions during S. aureus infection and function to restrain and eliminate the pathogen (6, 9, 58). The abscess core contains fibrin, viable and necrotic neutrophils, tissue debris, and live bacteria. Abscess maturation is accompanied by formation of a fibrous capsule at the periphery; however, if the abscess is not tightly organized, systemic spread of infection may occur via the bloodstream (6, 9, 58). Interestingly, macrophages are localized to the periphery of the abscess in areas near the fibrous capsule, which may suggest a role in neutrophil chemotaxis toward and egress from the abscess (6, 9).

The immune mechanisms involved in abscess formation are beginning to be uncovered. Cho et al. (59) has shown that neutrophil-derived IL-1β is required for S. aureus–induced abscess formation. Recently, Feuerstein et al. (14) suggested that resident macrophages expressing MyD88 contribute to abscess maturation. Our unpublished observations show that the lipid mediator leukotriene B4 is essential for neutrophil direction to the infectious focus, microbial killing, and fibrous capsule formation (S.L. Brandt, S. Wang, S. Winfree, B.P. McCarthy, P.R. Territo, L. Miller, and C.H. Serezani, manuscript in preparation). Furthermore, an ointment containing leukotriene B4 increases S. aureus clearance and decreases lesion size. These findings correlate with neutrophil recruitment, abscess formation, ROS production, and IL-1β generation. Although there is much more to learn regarding the host-derived products that contribute to formation of abscess, a considerable amount of research has focused on the staphylococcal factors that promote survival within abscesses.

Among the S. aureus virulence factors involved in abscess formation, staphylocoagulase (Coa), von Willebrand factor binding protein (vWbp), and clumping factor A (ClfA) are all required for abscess formation. These proteins promote coagulation leading to fibrin generation and the formation of a pseudocapsule surrounding staphylococcal abscess communities within individual abscess lesions (6, 60).

Taken together, understanding the immune responses to S. aureus in skin as well as host and bacterial mechanisms of abscess formation and survival will aid in understanding the dynamics of staphylococcal pathogenesis and could lead to effective therapeutic strategies to prevent deeper infection (Fig. 1A, right).

Osteomyelitis as a paradigm for invasive staphylococcal infection.

Beyond skin infections, S. aureus has a remarkable ability to invade and proliferate within nearly every organ system. Of the many tissues that S. aureus is capable of colonizing, bone is one of the most frequently infected and unfortunately one of the most debilitating manifestations of disease.

S. aureus is by far the most common cause of osteomyelitis (61, 62). Treatment regimens include prolonged antimicrobial therapy in conjunction with surgery to remove infected or devitalized bone. These surgical procedures are necessary given that S. aureus triggers profound bone destruction, which is accompanied by a loss of vascular architecture and thus decreased delivery of antimicrobials to the site of infection. S. aureus is also the most common cause of septic arthritis, which can trigger subchondral bone destruction or even frank osteomyelitis if contiguous spread occurs (63, 64). Osteomyelitis is therefore paradigmatic for invasive staphylococcal infections that are recalcitrant to treatment and carry considerable morbidity. In the following sections, we detail advances in our understanding of the innate immune responses to S. aureus infection of bone.

Bone as a target tissue for S. aureus infection.

Bone is a complex tissue consisting of a mineralized organic matrix that is constantly remodeled by the coordinated actions of osteoblasts, bone-forming cells, and osteoclasts, bone-resorbing cells. Although osteoblasts differentiate from mesenchymal stem cells, osteoclasts develop from monocytic progenitors, providing an inherent link between innate immunity and bone remodeling. S. aureus is capable of colonizing skeletal tissues following hematogenous dissemination, via direct inoculation following trauma, or by spread of a contiguous infection. Upon colonization of bone, S. aureus is capable of establishing chronic infection, often surviving within traditional abscess lesions in the bone marrow or invading directly into damaged bone through the network of osteocytic canaliculi (65). In addition to invading into healthy bone tissue, S. aureus can also invade and adhere to pieces of devitalized bone known as sequestra, creating a niche for chronic infection (Fig. 2) (65). The mechanisms used by staphylococci to persist within bone are an area of ongoing investigation and are outside the scope of this review (6670). However, the events leading to detection of invading staphylococci by the immune system in bone are poorly understood in comparison with studies in skin. Moreover, innate immune responses to bacterial pathogens in bone lead to profound effects on bone remodeling, which in turn influence the outcome of infection (66, 7175).

FIGURE 2.

S. aureus forms traditional abscesses in bone marrow but also grows directly on and invades into living and dead bone fragments. Murine femurs were extracted, fixed in neutral buffered formalin, and dehydrated in 70% ethanol. Following decalcification in 20% EDTA (pH 7.4), femurs were processed and embedded in paraffin. Femurs infected with S. aureus (A) or mock infected with PBS (B) were sectioned and stained with a modified H&E stain prior to imaging at original magnification ×1. Different abscess morphologies, including a traditional abscess (box C) in the bone marrow (C) and sequestra (box D) along cortical bone fragments (D), were observed in the S. aureus–infected femurs upon imaging at original magnification ×10. Arrowheads in (C) denote the boundaries of the abscess’s neutrophilic infiltrate. * denotes the staphylococcal abscess community surrounded by an eosinophilic pseudocapsule in the center of the abscess. The hash symbol in (D) denotes a nonviable piece of cortical bone (sequestrum) with tightly adherent clusters of staphylococci (arrows) both on the surface of and within the sequestrum. (E and F) A second murine osteomyelitis sample was stained with both modified H&E (E) and tartrate-resistant acid phosphatase (mature osteoclast marker) (F) to demonstrate that S. aureus can also adhere to segments of living cortical bone (denoted by #), as osteoclasts (arrows) are visualized remodeling the same fragment of cortical bone. An asterisk (*) denotes a large cluster of staphylococci directly adherent to the bone segment.

FIGURE 2.

S. aureus forms traditional abscesses in bone marrow but also grows directly on and invades into living and dead bone fragments. Murine femurs were extracted, fixed in neutral buffered formalin, and dehydrated in 70% ethanol. Following decalcification in 20% EDTA (pH 7.4), femurs were processed and embedded in paraffin. Femurs infected with S. aureus (A) or mock infected with PBS (B) were sectioned and stained with a modified H&E stain prior to imaging at original magnification ×1. Different abscess morphologies, including a traditional abscess (box C) in the bone marrow (C) and sequestra (box D) along cortical bone fragments (D), were observed in the S. aureus–infected femurs upon imaging at original magnification ×10. Arrowheads in (C) denote the boundaries of the abscess’s neutrophilic infiltrate. * denotes the staphylococcal abscess community surrounded by an eosinophilic pseudocapsule in the center of the abscess. The hash symbol in (D) denotes a nonviable piece of cortical bone (sequestrum) with tightly adherent clusters of staphylococci (arrows) both on the surface of and within the sequestrum. (E and F) A second murine osteomyelitis sample was stained with both modified H&E (E) and tartrate-resistant acid phosphatase (mature osteoclast marker) (F) to demonstrate that S. aureus can also adhere to segments of living cortical bone (denoted by #), as osteoclasts (arrows) are visualized remodeling the same fragment of cortical bone. An asterisk (*) denotes a large cluster of staphylococci directly adherent to the bone segment.

Close modal

Osteoimmunology: reciprocal interactions between the skeleton and the immune system.

The intricate cellular interactions that lead to bone remodeling took many decades to delineate and are still an active area of research. In the late 1980s, osteoblasts were linked to the regulation of osteoclastogenesis, even before the primary signals for osteoclastogenesis had been identified (7678). M-CSF was identified as a critical factor supporting osteoclastogenesis, which was in keeping with the observation that osteoclasts arise from myeloid cells during coculture experiments (79, 80). These early discoveries paved the way for the identification of a TNF-family cytokine, receptor activator of NF-κB ligand (RANKL), as the canonical osteoclast differentiation factor (81, 82) as well as the discovery of a related inhibitory molecule known as osteoprotegrin (OPG) (83, 84). Osteoblast-lineage cells produce both RANKL and OPG to maintain the balance between bone formation and resorption (81, 82, 85).

The field of osteoimmunology, in which the effects of various immune cell–derived factors and cytokines on bone homeostasis were examined, emerged from decades of work dating back to the 1970s (86, 87). TNF-α, IL-1, and IL-6 favor bone resorption by promoting osteoclast differentiation and function. Indeed, IL-1 was initially described as osteoclast activating factor because of its effects on bone (88, 89). IL-1, IL-6, and TNF-α trigger osteoblast lineage cells to upregulate RANKL (90), whereas IL-1 and TNF-α can also act on osteoclasts to promote differentiation, survival, and bone resorbing activity (9193). However, both TNF-α and IL-1 can only affect osteoclast precursors that have first been primed with RANKL (94, 95). Interestingly, bone remodeling mediated by TNF-α is in part driven by its ability to alter osteoblastic expression of IL-1 and the IL-1R (96). In addition to these cytokines, TH17 cells contribute to bone loss during arthritis, as IL-17 triggers RANKL production and osteoclastogenesis (97, 98). In contrast to IL-1, IL-6, TNF-α, and IL-17, anti-inflammatory and TH2 cytokines are largely antiosteoclastogenic. IL-10 can signal directly onto preosteoclasts to suppress RANKL-induced transcription factors (99, 100). Similarly, IL-4 and IL-13 inhibit osteoblast proliferation, favor production of OPG, and decrease RANK expression on osteoclasts (101104). Therefore, proinflammatory and anti-inflammatory cytokines have major impacts on osteoclastogenesis with the major common mechanism being modulation of osteoblast-lineage RANKL production.

Bone cells as innate sensors of bacterial pathogens.

S. aureus has an extraordinary virulence repertoire that facilitates binding to host tissues, subsequent tissue invasion, host cell death, and bacterial dissemination (105108). Yet, these virulence factors also serve as potent stimuli for activation of innate immune responses.

Staphylococcal adhesins allow binding to extracellular matrix components found in bone, including fibronectin and collagen (109). Select adhesins also promote endocytic uptake into nonprofessional phagocytic cells, such as osteoblasts (109, 110). Once internalized, S. aureus can escape into the cytoplasm by lysing the endosome (111114). This close association with bone cells triggers immune responses, as osteoblasts, osteoclasts, and their precursor cells express a repertoire of PRRs (115120).

Depending on the cell type, PRR ligation has variable outcomes. PRR stimulation prevents myeloid precursor cells from subsequently becoming osteoclasts but enhances RANKL-primed, preosteoclast differentiation (115). Additionally, osteoblast PRR activation leads to production of pro-osteoclastogenic cytokines, such as TNF-α and RANKL as well as other cytokines and antimicrobial peptides (115, 121, 122). RANKL signaling on myeloid cells induces signaling cascades through TRAF6, NIK, IKK, p38, ERK, and JNK, activating noncanonical and canonical NF-κB, AP-1, MITF, and NFATc1 transcription factors (123). These differentiation pathways overlap with immune-mediated signaling and provide potential for cross-talk downstream of immune activation. IL-1 cytokines also signal through TRAF6 to activate p38 MAPK, leading to enhanced osteoclastogenesis (96, 124). Taken together, the effect of TLR/IL-1R ligation on osteoclast differentiation is complex, but once cells are primed with RANKL, these stimuli appear to enhance osteoclastogenesis.

Specific PRRs on bone cells that sense S. aureus include TLR2 recognition of peptidoglycan and lipoteichoic acid (118, 125, 126), TLR9 endosomal recognition of bacterial DNA, and NOD-mediated recognition of cytoplasmic bacteria following escape from the endosome. Similar to the interactions with resident skin cells, S. aureus activates TLR2 on osteoblasts in vitro, leading to release of antimicrobial peptides and cell death (121, 127). Once internalized, S. aureus in osteoblasts can be killed in the endosome through TLR9-mediated induction of oxidative stress although not as robustly as professional phagocytes (128, 129). S. aureus also triggers expression of NOD2 by osteoblasts (130, 131), and cooperation between TLR2 and NOD2 induces RANKL production (116, 117, 132). Finally, the NLRP3 inflammasome can be activated by S. aureus peptidoglycan and bone particles in myeloid cells (133, 134). Consequently, recognition of S. aureus by multiple PRRs on bone cells induces a robust inflammatory response and alters bone remodeling (Fig. 1B). S. aureus recognition by PRRs, such as TLR2 and NOD2, allows for shared innate mechanisms between resident skin and bone cells, emphasizing the importance of response to general bacterial motifs.

Deconvolution of the innate immune responses to S. aureus osteomyelitis using animal models.

Animal models of osteomyelitis can be used to define critical immune responses, leading to inflammation and alterations in bone remodeling (66, 68, 70, 71, 135139). In a murine model of posttraumatic S. aureus osteomyelitis, Yoshii et al. (140) found high levels of IL-1, IL-6, and TNF-α in bone early postinfection with TNF-α remaining elevated for the 28-d course of infection. The chemokines CCL3, CXCL2, and CCL2 have also been detected at high levels during osteomyelitis, and importantly, CCL3 and CXCL2 can trigger osteoclastogenesis and enhance bone loss (141, 142).

Downstream of PRRs, signaling through MyD88 is critical for osteoclastogenesis enhanced by PAMPs and IL-1 (115, 143). Just as MyD88/IL-1R are important in neutrophil recruitment and S. aureus clearance in skin infection models (17), these signaling pathways are also crucial for bacterial control on implants in a postarthroplasty model of infection (144). Furthermore, IL-1R–deficient mice were found to have a higher frequency and severity of septic arthritis in a systemic S. aureus model (145). The role of TLR2 in S. aureus infection is largely dependent on the model system employed and the target tissue examined (see above). TLR2 enhances bone resorption in response to injection of heat-killed S. aureus but not a lipoprotein-deficient strain (146). This supports a mechanism whereby TLR2 senses systemic bacterial components and can mediate changes in bone homeostasis. These studies corroborate that MyD88-dependent PRRs and cytokines are critical for bone remodeling and control of S. aureus infection.

S. aureus–secreted virulence factors induce bone cell death and contribute to the pathogenesis of osteomyelitis.

S. aureus pathogenesis is partially dependent on secreted virulence factors, including cytolytic toxins and proteins that modify immune functions. In experimental models of osteomyelitis, several S. aureus proteins impact bone architecture and contribute to comorbidities, such as sepsis. Abscess formation in the bone marrow and around devitalized bone leads to a hypoxic environment, which subsequently alters quorum sensing and toxin production (67). PSMs mediate ∼30% of the cortical bone loss observed in a murine model of osteomyelitis, with direct cytolytic effects on osteoblasts (66, 67). Bone destruction can also be triggered by the superantigen TSST-1 and staphylococcal protein A (Spa), which both activate osteoclast signaling to enhance bone resorption (75, 147, 148). PVL enhances early bacterial survival in bone and promotes bacterial spread to nearby muscles and joints in a rabbit model of osteomyelitis (149). Furthermore, α-hemolysin contributes to severe sepsis-related mortality following osteomyelitis in rabbits (150).

In addition to their role in osteomyelitis, staphylococcal toxins significantly contribute to the pathogenesis of infection in other organ systems. For example, PSMs are small, amphipathic pore-forming toxins that are relatively promiscuous in their ability to induce toxicity among several cell types and species (67, 151). In the skin, PSMs stimulate KCs to release proinflammatory cytokines (152). PVL contributes to staphylococcal skin disease by facilitating spread to neighboring muscle during skin infection (153). Taken together, these findings highlight the essential role of staphylococcal secreted virulence factors in disease pathogenesis and highlight the broad-tissue tropism of cytolytic toxins.

Limited but compelling evidence implicates the S. aureus toxin repertoire in disease severity during human infection. S. aureus strains expressing PVL are associated with more severe local disease and a greater systemic inflammatory response in children with osteomyelitis (154). Additionally, PVL has been shown to mediate lysis of human myeloid cells, including osteoclasts, after binding the C5a receptor (147). Yet, the contribution of staphylococcal toxins regarding disease severity and pathogenesis varies based on the infection site and the repertoire of virulence factors expressed by the infecting S. aureus strains, which may not be fully assessed in experimental models.

Putting it all together: staphylococcal immune response in humans.

Individuals with diseases that impact innate immunity are at enhanced risk of staphylococcal infection. Genetic diseases that predispose individuals to S. aureus infections include chronic granulomatous disease (155), deficiencies in MyD88 (156), IRAK-4 (157), TIRAP (158), and RAC2 (159); Wiskott–Aldrich syndrome (159); leukocyte adhesion deficiency (160); severe congenital neutropenia (160); and allelic variants of cytokines IL-1α, IL-4, and IL-6 (161); among others. Increased risk of S. aureus infection has also been associated with comorbidities, such as diabetes (162, 163), malnutrition (164), bone marrow transplantation (165), and HIV infection (166). In general, these conditions are associated with extreme dysregulation of the immune response. Although people with malnutrition (164, 167), newborns (168, 169), and bone marrow–transplant recipients (170) are functionally immunocompromised, patients with uncontrolled diabetes (171173), obesity (174, 175), and advancing age (176, 177) exhibit chronic low-grade inflammation and are also susceptible to infection. However, the common ground that favors S. aureus infection remains to be determined.

Remaining questions and future research.

The innate immune response to S. aureus mediates infection outcomes and is dependent on host genetics and comorbidities, the tissue environment, and mechanisms of immune evasion by bacterial pathogens. Skin and bone cells participate in the induction of innate immunity and subsequent tissue remodeling events. Future research should therefore investigate how tissue-resident cells instigate immune responses through the elaboration of cytokines, the recruitment of phagocytes, and the production of antimicrobial compounds. At the same time, these studies must address the consequences of immune activation on tissue homeostasis and remodeling, factors that play a large role in the morbidity of infectious diseases and the eventual recovery of a functional organ system. Specific questions remain about the contribution of individual cell lineages to immunity in both skin and bone. Targeted inactivation of innate pathways in tissue-resident cells using genetic tools, such as CRISPR-Cas or Cre-lox technology, will be necessary to study their contribution to antistaphylococcal immunity in vivo. Additional areas of future research include the redundancy or compensation between PRRs, cross-talk downstream of common PRR and tissue-specific signaling pathways, and mechanisms of adaptive immunity that limit morbidity from primary innate immunodeficiency. Furthermore, the cellular and species tropism of secreted S. aureus virulence factors is worthy of ongoing investigation (178). The contribution of individual toxins to disease pathogenesis is controversial when considering data from different animal models. For example, PVL activity is restricted to the human and rabbit C5a receptor; thus, the effects of this toxin cannot be elucidated using murine models (179). Similarly, other staphylococcal bicomponent toxins have species-specific interactions with receptors; therefore, not all animal models are appropriate to measure toxin effects (178). Although innate immune responses are the first line of defense to prevent dissemination of S. aureus, these early events influence subsequent adaptive responses. A thorough understanding of immune protection from staphylococcal disease will therefore only result from study of both arms of the immune system.

In conclusion, innate immunity to S. aureus infection is multifaceted and tissue specific. Decades of research on staphylococcal pathogenesis have elucidated important roles for key PRRs, such as TLR2 and NOD2, as well as for specific cytokine signaling pathways, such as IL-1. The roles of tissue-resident cells in these signaling processes are beginning to be explored and will be facilitated by new mammalian genetic tools. Understanding how innate immune responses impact tissue homeostasis is a critical future direction, given that tissue pathologic condition is a significant driver of morbidity, mortality, and treatment failure. New therapies aimed at boosting innate immunity or blocking immunoevasive factors produced by S. aureus hold considerable progress as adjunctive therapies for the treatment of invasive infection (180182).

This work was supported by National Institutes of Health Grants HL10377701 (to C.H.S.), T32AI060519 (to S.L.B.), R01AI132560 (to J.E.C.), K08AI113107 (to J.E.C.), and 1F31AI133926-01 (to N.E.P.). J.E.C. is also supported by a Burroughs Wellcome Fund Career Award for Medical Scientists.

Abbreviations used in this article:

KC

keratinocyte

LC

Langerhans cell

NET

neutrophil extracellular trap

NOD

nucleotide-binding oligomerization domain

OPG

osteoprotegrin

PAMP

pathogen-associated molecular pattern

PRR

pattern-recognition receptor

PSM

phenol soluble modulin

PVL

Panton–Valentine leukocidin

RANKL

receptor activator of NF-κB ligand

ROS

reactive oxygen species.

1
Wertheim
,
H. F.
,
D. C.
Melles
,
M. C.
Vos
,
W.
van Leeuwen
,
A.
van Belkum
,
H. A.
Verbrugh
,
J. L.
Nouwen
.
2005
.
The role of nasal carriage in Staphylococcus aureus infections.
Lancet Infect. Dis.
5
:
751
762
.
2
Moran
,
G. J.
,
A.
Krishnadasan
,
R. J.
Gorwitz
,
G. E.
Fosheim
,
L. K.
McDougal
,
R. B.
Carey
,
D. A.
Talan
;
EMERGEncy ID Net Study Group
.
2006
.
Methicillin-resistant S. aureus infections among patients in the emergency department.
N. Engl. J. Med.
355
:
666
674
.
3
Ray
,
G. T.
,
J. A.
Suaya
,
R.
Baxter
.
2013
.
Incidence, microbiology, and patient characteristics of skin and soft-tissue infections in a U.S. population: a retrospective population-based study.
BMC Infect. Dis.
13
:
252
.
4
Newsom
,
S. W.
2008
.
Ogston’s coccus.
J. Hosp. Infect.
70
:
369
372
.
5
Ogston
,
A.
;
British Medical Association
; 
Scientific Grants Committee
.
1881
.
Report Upon Micro-organisms in Surgical Diseases Presented to the Scientific Grants Committee of the British Medical Association.
British Medical Association
,
London
.
6
Cheng
,
A. G.
,
A. C.
DeDent
,
O.
Schneewind
,
D.
Missiakas
.
2011
.
A play in four acts: Staphylococcus aureus abscess formation.
Trends Microbiol.
19
:
225
232
.
7
Pasparakis
,
M.
,
I.
Haase
,
F. O.
Nestle
.
2014
.
Mechanisms regulating skin immunity and inflammation.
Nat. Rev. Immunol.
14
:
289
301
.
8
Matejuk
,
A.
2018
.
Skin immunity.
Arch. Immunol. Ther. Exp. (Warsz.)
66
:
45
54
.
9
Kobayashi
,
S. D.
,
N.
Malachowa
,
F. R.
DeLeo
.
2015
.
Pathogenesis of Staphylococcus aureus abscesses.
Am. J. Pathol.
185
:
1518
1527
.
10
Ibrahim
,
F.
,
T.
Khan
,
G. G.
Pujalte
.
2015
.
Bacterial skin infections.
Prim. Care
42
:
485
499
.
11
Mistry
,
R. D.
2013
.
Skin and soft tissue infections.
Pediatr. Clin. North Am.
60
:
1063
1082
.
12
Miller
,
L. S.
2008
.
Toll-like receptors in skin.
Adv. Dermatol.
24
:
71
87
.
13
Bitschar
,
K.
,
C.
Wolz
,
B.
Krismer
,
A.
Peschel
,
B.
Schittek
.
2017
.
Keratinocytes as sensors and central players in the immune defense against Staphylococcus aureus in the skin.
J. Dermatol. Sci.
87
:
215
220
.
14
Feuerstein
,
R.
,
M.
Seidl
,
M.
Prinz
,
P.
Henneke
.
2015
.
MyD88 in macrophages is critical for abscess resolution in staphylococcal skin infection.
J. Immunol.
194
:
2735
2745
.
15
Olaru
,
F.
,
L. E.
Jensen
.
2010
.
Staphylococcus aureus stimulates neutrophil targeting chemokine expression in keratinocytes through an autocrine IL-1alpha signaling loop.
J. Invest. Dermatol.
130
:
1866
1876
.
16
Kielian
,
T.
,
N. K.
Phulwani
,
N.
Esen
,
M. M.
Syed
,
A. C.
Haney
,
K.
McCastlain
,
J.
Johnson
.
2007
.
MyD88-dependent signals are essential for the host immune response in experimental brain abscess.
J. Immunol.
178
:
4528
4537
.
17
Miller
,
L. S.
,
R. M.
O’Connell
,
M. A.
Gutierrez
,
E. M.
Pietras
,
A.
Shahangian
,
C. E.
Gross
,
A.
Thirumala
,
A. L.
Cheung
,
G.
Cheng
,
R. L.
Modlin
.
2006
.
MyD88 mediates neutrophil recruitment initiated by IL-1R but not TLR2 activation in immunity against Staphylococcus aureus.
Immunity
24
:
79
91
.
18
Pietrocola
,
G.
,
C. R.
Arciola
,
S.
Rindi
,
A.
Di Poto
,
A.
Missineo
,
L.
Montanaro
,
P.
Speziale
.
2011
.
Toll-like receptors (TLRs) in innate immune defense against Staphylococcus aureus.
Int. J. Artif. Organs
34
:
799
810
.
19
Hoebe
,
K.
,
P.
Georgel
,
S.
Rutschmann
,
X.
Du
,
S.
Mudd
,
K.
Crozat
,
S.
Sovath
,
L.
Shamel
,
T.
Hartung
,
U.
Zähringer
,
B.
Beutler
.
2005
.
CD36 is a sensor of diacylglycerides.
Nature
433
:
523
527
.
20
Schäffler
,
H.
,
D. D.
Demircioglu
,
D.
Kühner
,
S.
Menz
,
A.
Bender
,
I. B.
Autenrieth
,
P.
Bodammer
,
G.
Lamprecht
,
F.
Götz
,
J. S.
Frick
.
2014
.
NOD2 stimulation by Staphylococcus aureus-derived peptidoglycan is boosted by Toll-like receptor 2 costimulation with lipoproteins in dendritic cells.
Infect. Immun.
82
:
4681
4688
.
21
Parker
,
D.
,
P. J.
Planet
,
G.
Soong
,
A.
Narechania
,
A.
Prince
.
2014
.
Induction of type I interferon signaling determines the relative pathogenicity of Staphylococcus aureus strains.
PLoS Pathog.
10
:
e1003951
.
22
Kapetanovic
,
R.
,
G.
Jouvion
,
C.
Fitting
,
M.
Parlato
,
C.
Blanchet
,
M.
Huerre
,
J. M.
Cavaillon
,
M.
Adib-Conquy
.
2010
.
Contribution of NOD2 to lung inflammation during Staphylococcus aureus-induced pneumonia.
Microbes Infect.
12
:
759
767
.
23
Hruz
,
P.
,
A. S.
Zinkernagel
,
G.
Jenikova
,
G. J.
Botwin
,
J. P.
Hugot
,
M.
Karin
,
V.
Nizet
,
L.
Eckmann
.
2009
.
NOD2 contributes to cutaneous defense against Staphylococcus aureus through alpha-toxin-dependent innate immune activation.
Proc. Natl. Acad. Sci. USA
106
:
12873
12878
.
24
Deshmukh
,
H. S.
,
J. B.
Hamburger
,
S. H.
Ahn
,
D. G.
McCafferty
,
S. R.
Yang
,
V. G.
Fowler
Jr.
2009
.
Critical role of NOD2 in regulating the immune response to Staphylococcus aureus.
Infect. Immun.
77
:
1376
1382
.
25
Castleman
,
M. J.
,
M.
Febbraio
,
P. R.
Hall
.
2015
.
CD36 is essential for regulation of the host innate response to Staphylococcus aureus α-toxin-mediated dermonecrosis.
J. Immunol.
195
:
2294
2302
.
26
Blanchet
,
C.
,
G.
Jouvion
,
C.
Fitting
,
J. M.
Cavaillon
,
M.
Adib-Conquy
.
2014
.
Protective or deleterious role of scavenger receptors SR-A and CD36 on host resistance to Staphylococcus aureus depends on the site of infection.
PLoS One
9
:
e87927
.
27
Fabriek
,
B. O.
,
R.
van Bruggen
,
D. M.
Deng
,
A. J.
Ligtenberg
,
K.
Nazmi
,
K.
Schornagel
,
R. P.
Vloet
,
C. D.
Dijkstra
,
T. K.
van den Berg
.
2009
.
The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria.
Blood
113
:
887
892
.
28
Kashem
,
S. W.
,
M.
Haniffa
,
D. H.
Kaplan
.
2017
.
Antigen-presenting cells in the skin.
Annu. Rev. Immunol.
35
:
469
499
.
29
Abtin
,
A.
,
R.
Jain
,
A. J.
Mitchell
,
B.
Roediger
,
A. J.
Brzoska
,
S.
Tikoo
,
Q.
Cheng
,
L. G.
Ng
,
L. L.
Cavanagh
,
U. H.
von Andrian
, et al
.
2014
.
Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection.
Nat. Immunol.
15
:
45
53
.
30
Feuerstein
,
R.
,
J.
Kolter
,
P.
Henneke
.
2017
.
Dynamic interactions between dermal macrophages and Staphylococcus aureus.
J. Leukoc. Biol.
101
:
99
106
.
31
Krishna
,
S.
,
L. S.
Miller
.
2012
.
Innate and adaptive immune responses against Staphylococcus aureus skin infections.
Semin. Immunopathol.
34
:
261
280
.
32
Miller
,
L. S.
,
J. S.
Cho
.
2011
.
Immunity against Staphylococcus aureus cutaneous infections.
Nat. Rev. Immunol.
11
:
505
518
.
33
Guerra
,
F. E.
,
T. R.
Borgogna
,
D. M.
Patel
,
E. W.
Sward
,
J. M.
Voyich
.
2017
.
Epic immune battles of history: neutrophils vs. Staphylococcus aureus.
Front. Cell. Infect. Microbiol.
7
:
286
.
34
Anwar
,
S.
,
L. R.
Prince
,
S. J.
Foster
,
M. K.
Whyte
,
I.
Sabroe
.
2009
.
The rise and rise of Staphylococcus aureus: laughing in the face of granulocytes.
Clin. Exp. Immunol.
157
:
216
224
.
35
Prévost
,
G.
,
D. A.
Colin
,
L.
Staali
,
L.
Baba Moussa
,
A.
Gravet
,
S.
Werner
,
A.
Sanni
,
O.
Meunier
,
H.
Monteil
.
1998
.
[Pore-forming leukotoxins from Staphylococcus aureus: variability of the target cells and 2 pharmacological processes]
.
Pathol. Biol.
46
:
435
441
.
36
Antonelou
,
M.
,
J.
Knowles
,
S.
Siddiqi
,
P.
Sharma
.
2011
.
Recurrent cutaneous abscesses caused by PVL-MRSA.
BMJ Case Rep.
DOI: 10.1136/bcr.01.2011.3680.
37
Sachet
,
M.
,
Y. Y.
Liang
,
R.
Oehler
.
2017
.
The immune response to secondary necrotic cells.
Apoptosis
22
:
1189
1204
.
38
Ahn
,
D.
,
A.
Prince
.
2017
.
Participation of necroptosis in the host response to acute bacterial pneumonia.
J. Innate Immun.
9
:
262
270
.
39
Parker
,
D.
,
A.
Prince
.
2016
.
Immunoregulatory effects of necroptosis in bacterial infections.
Cytokine
88
:
274
275
.
40
Kaplan
,
D. H.
2017
.
Ontogeny and function of murine epidermal Langerhans cells.
Nat. Immunol.
18
:
1068
1075
.
41
Dejani
,
N. N.
,
S. L.
Brandt
,
A.
Piñeros
,
N. L.
Glosson-Byers
,
S.
Wang
,
Y. M.
Son
,
A. I.
Medeiros
,
C. H.
Serezani
.
2016
.
Topical prostaglandin E analog restores defective dendritic cell-mediated Th17 host defense against methicillin-resistant Staphylococcus Aureus in the skin of diabetic mice.
Diabetes
65
:
3718
3729
.
42
Ouchi
,
T.
,
A.
Kubo
,
M.
Yokouchi
,
T.
Adachi
,
T.
Kobayashi
,
D. Y.
Kitashima
,
H.
Fujii
,
B. E.
Clausen
,
S.
Koyasu
,
M.
Amagai
,
K.
Nagao
.
2011
.
Langerhans cell antigen capture through tight junctions confers preemptive immunity in experimental staphylococcal scalded skin syndrome.
J. Exp. Med.
208
:
2607
2613
.
43
Harrison
,
C. J.
2009
.
Innate immunity as a key element in host defense against methicillin resistant Staphylococcus aureus.
Minerva Pediatr.
61
:
503
514
.
44
Okumura
,
C. Y.
,
V.
Nizet
.
2014
.
Subterfuge and sabotage: evasion of host innate defenses by invasive gram-positive bacterial pathogens.
Annu. Rev. Microbiol.
68
:
439
458
.
45
Buvelot
,
H.
,
K. M.
Posfay-Barbe
,
P.
Linder
,
J.
Schrenzel
,
K. H.
Krause
.
2017
.
Staphylococcus aureus, phagocyte NADPH oxidase and chronic granulomatous disease.
FEMS Microbiol. Rev.
41
:
139
157
.
46
Beavers
,
W. N.
,
E. P.
Skaar
.
2016
.
Neutrophil-generated oxidative stress and protein damage in Staphylococcus aureus.
Pathog. Dis.
DOI: 10.1093/femspd/ftw060.
47
Bogdan
,
C.
2001
.
Nitric oxide and the immune response.
Nat. Immunol.
2
:
907
916
.
48
Li
,
C.
,
H.
Li
,
Z.
Jiang
,
T.
Zhang
,
Y.
Wang
,
Z.
Li
,
Y.
Wu
,
S.
Ji
,
S.
Xiao
,
B.
Ryffel
, et al
.
2014
.
Interleukin-33 increases antibacterial defense by activation of inducible nitric oxide synthase in skin.
PLoS Pathog.
10
:
e1003918
.
49
Zhao
,
Y. T.
,
J. H.
Guo
,
Z. L.
Wu
,
Y.
Xiong
,
W. L.
Zhou
.
2008
.
Innate immune responses of epididymal epithelial cells to Staphylococcus aureus infection.
Immunol. Lett.
119
:
84
90
.
50
Grosser
,
M. R.
,
A.
Weiss
,
L. N.
Shaw
,
A. R.
Richardson
.
2016
.
Regulatory requirements for Staphylococcus aureus nitric oxide resistance.
J. Bacteriol.
198
:
2043
2055
.
51
Vitko
,
N. P.
,
N. A.
Spahich
,
A. R.
Richardson
.
2015
.
Glycolytic dependency of high-level nitric oxide resistance and virulence in Staphylococcus aureus.
MBio
6
: e00045-15.
52
Kobayashi
,
Y.
2015
.
Neutrophil biology: an update.
EXCLI J.
14
:
220
227
.
53
Greenlee-Wacker
,
M.
,
F. R.
DeLeo
,
W. M.
Nauseef
.
2015
.
How methicillin-resistant Staphylococcus aureus evade neutrophil killing.
Curr. Opin. Hematol.
22
:
30
35
.
54
van Kessel
,
K. P.
,
J.
Bestebroer
,
J. A.
van Strijp
.
2014
.
Neutrophil-mediated phagocytosis of Staphylococcus aureus.
Front. Immunol.
5
:
467
.
55
Yipp
,
B. G.
,
B.
Petri
,
D.
Salina
,
C. N.
Jenne
,
B. N.
Scott
,
L. D.
Zbytnuik
,
K.
Pittman
,
M.
Asaduzzaman
,
K.
Wu
,
H. C.
Meijndert
, et al
.
2012
.
Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo.
Nat. Med.
18
:
1386
1393
.
56
Brinkmann
,
V.
,
U.
Reichard
,
C.
Goosmann
,
B.
Fauler
,
Y.
Uhlemann
,
D. S.
Weiss
,
Y.
Weinrauch
,
A.
Zychlinsky
.
2004
.
Neutrophil extracellular traps kill bacteria.
Science
303
:
1532
1535
.
57
Thammavongsa
,
V.
,
D. M.
Missiakas
,
O.
Schneewind
.
2013
.
Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death.
Science
342
:
863
866
.
58
Singer
,
A. J.
,
D. A.
Talan
.
2014
.
Management of skin abscesses in the era of methicillin-resistant Staphylococcus aureus.
N. Engl. J. Med.
370
:
1039
1047
.
59
Cho
,
J. S.
,
Y.
Guo
,
R. I.
Ramos
,
F.
Hebroni
,
S. B.
Plaisier
,
C.
Xuan
,
J. L.
Granick
,
H.
Matsushima
,
A.
Takashima
,
Y.
Iwakura
, et al
.
2012
.
Neutrophil-derived IL-1β is sufficient for abscess formation in immunity against Staphylococcus aureus in mice.
PLoS Pathog.
8
:
e1003047
.
60
Cheng
,
A. G.
,
H. K.
Kim
,
M. L.
Burts
,
T.
Krausz
,
O.
Schneewind
,
D. M.
Missiakas
.
2009
.
Genetic requirements for Staphylococcus aureus abscess formation and persistence in host tissues.
FASEB J.
23
:
3393
3404
.
61
Lew
,
D. P.
,
F. A.
Waldvogel
.
2004
.
Osteomyelitis.
Lancet
364
:
369
379
.
62
Copley
,
L. A.
2009
.
Pediatric musculoskeletal infection: trends and antibiotic recommendations.
J. Am. Acad. Orthop. Surg.
17
:
618
626
.
63
Shirtliff
,
M. E.
,
J. T.
Mader
.
2002
.
Acute septic arthritis.
Clin. Microbiol. Rev.
15
:
527
544
.
64
Verdrengh
,
M.
,
H.
Carlsten
,
C.
Ohlsson
,
A.
Tarkowski
.
2006
.
Rapid systemic bone resorption during the course of Staphylococcus aureus-induced arthritis.
J. Infect. Dis.
194
:
1597
1600
.
65
de Mesy Bentley
,
K. L.
,
R.
Trombetta
,
K.
Nishitani
,
S. N.
Bello-Irizarry
,
M.
Ninomiya
,
L.
Zhang
,
H. L.
Chung
,
J. L.
McGrath
,
J. L.
Daiss
,
H. A.
Awad
, et al
.
2017
.
Evidence of Staphylococcus aureus deformation, proliferation, and migration in canaliculi of live cortical bone in murine models of osteomyelitis.
J. Bone Miner. Res.
32
:
985
990
.
66
Cassat
,
J. E.
,
N. D.
Hammer
,
J. P.
Campbell
,
M. A.
Benson
,
D. S.
Perrien
,
L. N.
Mrak
,
M. S.
Smeltzer
,
V. J.
Torres
,
E. P.
Skaar
.
2013
.
A secreted bacterial protease tailors the Staphylococcus aureus virulence repertoire to modulate bone remodeling during osteomyelitis.
Cell Host Microbe
13
:
759
772
.
67
Wilde
,
A. D.
,
D. J.
Snyder
,
N. E.
Putnam
,
M. D.
Valentino
,
N. D.
Hammer
,
Z. R.
Lonergan
,
S. A.
Hinger
,
E. E.
Aysanoa
,
C.
Blanchard
,
P. M.
Dunman
, et al
.
2015
.
Bacterial hypoxic responses revealed as critical determinants of the host-pathogen outcome by TnSeq analysis of Staphylococcus aureus invasive infection.
PLoS Pathog.
11
:
e1005341
.
68
Loughran
,
A. J.
,
D.
Gaddy
,
K. E.
Beenken
,
D. G.
Meeker
,
R.
Morello
,
H.
Zhao
,
S. D.
Byrum
,
A. J.
Tackett
,
J. E.
Cassat
,
M. S.
Smeltzer
.
2016
.
Impact of sarA and Phenol-soluble modulins on the pathogenesis of osteomyelitis in diverse clinical isolates of Staphylococcus aureus.
Infect. Immun.
84
:
2586
2594
.
69
Tuchscherr
,
L.
,
M.
Bischoff
,
S. M.
Lattar
,
M.
Noto Llana
,
H.
Pförtner
,
S.
Niemann
,
J.
Geraci
,
H.
Van de Vyver
,
M. J.
Fraunholz
,
A. L.
Cheung
, et al
.
2015
.
Sigma factor SigB is crucial to mediate Staphylococcus aureus adaptation during chronic infections.
PLoS Pathog.
11
:
e1004870
.
70
Wang
,
Y.
,
L. I.
Cheng
,
D. R.
Helfer
,
A. G.
Ashbaugh
,
R. J.
Miller
,
A. J.
Tzomides
,
J. M.
Thompson
,
R. V.
Ortines
,
A. S.
Tsai
,
H.
Liu
, et al
.
2017
.
Mouse model of hematogenous implant-related Staphylococcus aureus biofilm infection reveals therapeutic targets.
Proc. Natl. Acad. Sci. USA
114
:
E5094
E5102
.
71
Horst
,
S. A.
,
V.
Hoerr
,
A.
Beineke
,
C.
Kreis
,
L.
Tuchscherr
,
J.
Kalinka
,
S.
Lehne
,
I.
Schleicher
,
G.
Köhler
,
T.
Fuchs
, et al
.
2012
.
A novel mouse model of Staphylococcus aureus chronic osteomyelitis that closely mimics the human infection: an integrated view of disease pathogenesis.
Am. J. Pathol.
181
:
1206
1214
.
72
Mbalaviele
,
G.
,
D. V.
Novack
,
G.
Schett
,
S. L.
Teitelbaum
.
2017
.
Inflammatory osteolysis: a conspiracy against bone.
J. Clin. Invest.
127
:
2030
2039
.
73
Wagner
,
J. M.
,
H.
Jaurich
,
C.
Wallner
,
S.
Abraham
,
M.
Becerikli
,
M.
Dadras
,
K.
Harati
,
V.
Duhan
,
V.
Khairnar
,
M.
Lehnhardt
,
B.
Behr
.
2017
.
Diminished bone regeneration after debridement of posttraumatic osteomyelitis is accompanied by altered cytokine levels, elevated B cell activity, and increased osteoclast activity.
J. Orthop. Res.
35
:
2425
2434
.
74
Widaa
,
A.
,
T.
Claro
,
T. J.
Foster
,
F. J.
O’Brien
,
S. W.
Kerrigan
.
2012
.
Staphylococcus aureus protein A plays a critical role in mediating bone destruction and bone loss in osteomyelitis.
PLoS One
7
:
e40586
.
75
Mendoza Bertelli
,
A.
,
M. V.
Delpino
,
S.
Lattar
,
C.
Giai
,
M. N.
Llana
,
N.
Sanjuan
,
J. E.
Cassat
,
D.
Sordelli
,
M. I.
Gómez
.
2016
.
Staphylococcus aureus protein A enhances osteoclastogenesis via TNFR1 and EGFR signaling.
Biochim. Biophys. Acta
1862
:
1975
1983
.
76
Takahashi
,
N.
,
T.
Akatsu
,
N.
Udagawa
,
T.
Sasaki
,
A.
Yamaguchi
,
J. M.
Moseley
,
T. J.
Martin
,
T.
Suda
.
1988
.
Osteoblastic cells are involved in osteoclast formation.
Endocrinology
123
:
2600
2602
.
77
Perry
, III,
H. M.
,
W.
Skogen
,
J.
Chappel
,
A. J.
Kahn
,
G.
Wilner
,
S. L.
Teitelbaum
.
1989
.
Partial characterization of a parathyroid hormone-stimulated resorption factor(s) from osteoblast-like cells.
Endocrinology
125
:
2075
2082
.
78
Rodan
,
G. A.
,
T. J.
Martin
.
1981
.
Role of osteoblasts in hormonal control of bone resorption--a hypothesis.
Calcif. Tissue Int.
33
:
349
351
.
79
Hofstetter
,
W.
,
A.
Wetterwald
,
M. C.
Cecchini
,
R.
Felix
,
H.
Fleisch
,
C.
Mueller
.
1992
.
Detection of transcripts for the receptor for macrophage colony-stimulating factor, c-fms, in murine osteoclasts.
Proc. Natl. Acad. Sci. USA
89
:
9637
9641
.
80
Burger
,
E. H.
,
J. W.
van der Meer
,
P. J.
Nijweide
.
1984
.
Osteoclast formation from mononuclear phagocytes: role of bone-forming cells.
J. Cell Biol.
99
:
1901
1906
.
81
Lacey
,
D. L.
,
E.
Timms
,
H. L.
Tan
,
M. J.
Kelley
,
C. R.
Dunstan
,
T.
Burgess
,
R.
Elliott
,
A.
Colombero
,
G.
Elliott
,
S.
Scully
, et al
.
1998
.
Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation.
Cell
93
:
165
176
.
82
Yasuda
,
H.
,
N.
Shima
,
N.
Nakagawa
,
K.
Yamaguchi
,
M.
Kinosaki
,
S.
Mochizuki
,
A.
Tomoyasu
,
K.
Yano
,
M.
Goto
,
A.
Murakami
, et al
.
1998
.
Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL.
Proc. Natl. Acad. Sci. USA
95
:
3597
3602
.
83
Tsuda
,
E.
,
M.
Goto
,
S.
Mochizuki
,
K.
Yano
,
F.
Kobayashi
,
T.
Morinaga
,
K.
Higashio
.
1997
.
Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis.
Biochem. Biophys. Res. Commun.
234
:
137
142
.
84
Simonet
,
W. S.
,
D. L.
Lacey
,
C. R.
Dunstan
,
M.
Kelley
,
M. S.
Chang
,
R.
Lüthy
,
H. Q.
Nguyen
,
S.
Wooden
,
L.
Bennett
,
T.
Boone
, et al
.
1997
.
Osteoprotegerin: a novel secreted protein involved in the regulation of bone density.
Cell
89
:
309
319
.
85
Udagawa
,
N.
,
N.
Takahashi
,
H.
Yasuda
,
A.
Mizuno
,
K.
Itoh
,
Y.
Ueno
,
T.
Shinki
,
M. T.
Gillespie
,
T. J.
Martin
,
K.
Higashio
,
T.
Suda
.
2000
.
Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function.
Endocrinology
141
:
3478
3484
.
86
Horton
,
J. E.
,
L. G.
Raisz
,
H. A.
Simmons
,
J. J.
Oppenheim
,
S. E.
Mergenhagen
.
1972
.
Bone resorbing activity in supernatant fluid from cultured human peripheral blood leukocytes.
Science
177
:
793
795
.
87
Arron
,
J. R.
,
Y.
Choi
.
2000
.
Bone versus immune system.
Nature
408
:
535
536
.
88
Dewhirst
,
F. E.
,
P. P.
Stashenko
,
J. E.
Mole
,
T.
Tsurumachi
.
1985
.
Purification and partial sequence of human osteoclast-activating factor: identity with interleukin 1 beta.
J. Immunol.
135
:
2562
2568
.
89
Gowen
,
M.
,
D. D.
Wood
,
E. J.
Ihrie
,
M. K.
McGuire
,
R. G.
Russell
.
1983
.
An interleukin 1 like factor stimulates bone resorption in vitro.
Nature
306
:
378
380
.
90
Nakashima
,
T.
,
Y.
Kobayashi
,
S.
Yamasaki
,
A.
Kawakami
,
K.
Eguchi
,
H.
Sasaki
,
H.
Sakai
.
2000
.
Protein expression and functional difference of membrane-bound and soluble receptor activator of NF-kappaB ligand: modulation of the expression by osteotropic factors and cytokines.
Biochem. Biophys. Res. Commun.
275
:
768
775
.
91
Lee
,
Y. M.
,
N.
Fujikado
,
H.
Manaka
,
H.
Yasuda
,
Y.
Iwakura
.
2010
.
IL-1 plays an important role in the bone metabolism under physiological conditions.
Int. Immunol.
22
:
805
816
.
92
Jimi
,
E.
,
T.
Shuto
,
T.
Koga
.
1995
.
Macrophage colony-stimulating factor and interleukin-1 alpha maintain the survival of osteoclast-like cells.
Endocrinology
136
:
808
811
.
93
Zhang
,
Y. H.
,
A.
Heulsmann
,
M. M.
Tondravi
,
A.
Mukherjee
,
Y.
Abu-Amer
.
2001
.
Tumor necrosis factor-alpha (TNF) stimulates RANKL-induced osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways.
J. Biol. Chem.
276
:
563
568
.
94
Lam
,
J.
,
S.
Takeshita
,
J. E.
Barker
,
O.
Kanagawa
,
F. P.
Ross
,
S. L.
Teitelbaum
.
2000
.
TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand.
J. Clin. Invest.
106
:
1481
1488
.
95
Kim
,
J. H.
,
H. M.
Jin
,
K.
Kim
,
I.
Song
,
B. U.
Youn
,
K.
Matsuo
,
N.
Kim
.
2009
.
The mechanism of osteoclast differentiation induced by IL-1.
J. Immunol.
183
:
1862
1870
.
96
Wei
,
S.
,
H.
Kitaura
,
P.
Zhou
,
F. P.
Ross
,
S. L.
Teitelbaum
.
2005
.
IL-1 mediates TNF-induced osteoclastogenesis.
J. Clin. Invest.
115
:
282
290
.
97
Kotake
,
S.
,
N.
Udagawa
,
N.
Takahashi
,
K.
Matsuzaki
,
K.
Itoh
,
S.
Ishiyama
,
S.
Saito
,
K.
Inoue
,
N.
Kamatani
,
M. T.
Gillespie
, et al
.
1999
.
IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis.
J. Clin. Invest.
103
:
1345
1352
.
98
Sato
,
K.
,
A.
Suematsu
,
K.
Okamoto
,
A.
Yamaguchi
,
Y.
Morishita
,
Y.
Kadono
,
S.
Tanaka
,
T.
Kodama
,
S.
Akira
,
Y.
Iwakura
, et al
.
2006
.
Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction.
J. Exp. Med.
203
:
2673
2682
.
99
Evans
,
K. E.
,
S. W.
Fox
.
2007
.
Interleukin-10 inhibits osteoclastogenesis by reducing NFATc1 expression and preventing its translocation to the nucleus.
BMC Cell Biol.
8
:
4
.
100
Mohamed
,
S. G.
,
E.
Sugiyama
,
K.
Shinoda
,
H.
Taki
,
H.
Hounoki
,
H. O.
Abdel-Aziz
,
M.
Maruyama
,
M.
Kobayashi
,
H.
Ogawa
,
T.
Miyahara
.
2007
.
Interleukin-10 inhibits RANKL-mediated expression of NFATc1 in part via suppression of c-Fos and c-Jun in RAW264.7 cells and mouse bone marrow cells.
Bone
41
:
592
602
.
101
Frost
,
A.
,
K. B.
Jonsson
,
H.
Brändström
,
S.
Ljunghall
,
O.
Nilsson
,
O.
Ljunggren
.
2001
.
Interleukin (IL)-13 and IL-4 inhibit proliferation and stimulate IL-6 formation in human osteoblasts: evidence for involvement of receptor subunits IL-13R, IL-13Ralpha, and IL-4Ralpha.
Bone
28
:
268
274
.
102
Palmqvist
,
P.
,
P.
Lundberg
,
E.
Persson
,
A.
Johansson
,
I.
Lundgren
,
A.
Lie
,
H. H.
Conaway
,
U. H.
Lerner
.
2006
.
Inhibition of hormone and cytokine-stimulated osteoclastogenesis and bone resorption by interleukin-4 and interleukin-13 is associated with increased osteoprotegerin and decreased RANKL and RANK in a STAT6-dependent pathway.
J. Biol. Chem.
281
:
2414
2429
.
103
Yamada
,
A.
,
M.
Takami
,
T.
Kawawa
,
R.
Yasuhara
,
B.
Zhao
,
A.
Mochizuki
,
Y.
Miyamoto
,
T.
Eto
,
H.
Yasuda
,
Y.
Nakamichi
, et al
.
2007
.
Interleukin-4 inhibition of osteoclast differentiation is stronger than that of interleukin-13 and they are equivalent for induction of osteoprotegerin production from osteoblasts.
Immunology
120
:
573
579
.
104
Wei
,
S.
,
M. W.
Wang
,
S. L.
Teitelbaum
,
F. P.
Ross
.
2002
.
Interleukin-4 reversibly inhibits osteoclastogenesis via inhibition of NF-kappa B and mitogen-activated protein kinase signaling.
J. Biol. Chem.
277
:
6622
6630
.
105
Thomer
,
L.
,
O.
Schneewind
,
D.
Missiakas
.
2016
.
Pathogenesis of Staphylococcus aureus bloodstream infections.
Annu. Rev. Pathol.
11
:
343
364
.
106
Alonzo
, III,
F.
,
V. J.
Torres
.
2014
.
The bicomponent pore-forming leucocidins of Staphylococcus aureus.
Microbiol. Mol. Biol. Rev.
78
:
199
230
.
107
Powers
,
M. E.
,
J.
Bubeck Wardenburg
.
2014
.
Igniting the fire: Staphylococcus aureus virulence factors in the pathogenesis of sepsis.
PLoS Pathog.
10
:
e1003871
.
108
Foster
,
T. J.
,
J. A.
Geoghegan
,
V. K.
Ganesh
,
M.
Höök
.
2014
.
Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus.
Nat. Rev. Microbiol.
12
:
49
62
.
109
Josse
,
J.
,
F.
Velard
,
S. C.
Gangloff
.
2015
.
Staphylococcus aureus vs. osteoblast: relationship and consequences in osteomyelitis.
Front. Cell. Infect. Microbiol.
5
:
85
.
110
Heilmann
,
C.
2011
.
Adhesion mechanisms of staphylococci.
Adv. Exp. Med. Biol.
715
:
105
123
.
111
Bayles
,
K. W.
,
C. A.
Wesson
,
L. E.
Liou
,
L. K.
Fox
,
G. A.
Bohach
,
W. R.
Trumble
.
1998
.
Intracellular Staphylococcus aureus escapes the endosome and induces apoptosis in epithelial cells.
Infect. Immun.
66
:
336
342
.
112
Giese
,
B.
,
F.
Glowinski
,
K.
Paprotka
,
S.
Dittmann
,
T.
Steiner
,
B.
Sinha
,
M. J.
Fraunholz
.
2011
.
Expression of δ-toxin by Staphylococcus aureus mediates escape from phago-endosomes of human epithelial and endothelial cells in the presence of β-toxin.
Cell. Microbiol.
13
:
316
329
.
113
Qazi
,
S. N.
,
E.
Counil
,
J.
Morrissey
,
C. E.
Rees
,
A.
Cockayne
,
K.
Winzer
,
W. C.
Chan
,
P.
Williams
,
P. J.
Hill
.
2001
.
agr expression precedes escape of internalized Staphylococcus aureus from the host endosome.
Infect. Immun.
69
:
7074
7082
.
114
Grosz
,
M.
,
J.
Kolter
,
K.
Paprotka
,
A. C.
Winkler
,
D.
Schäfer
,
S. S.
Chatterjee
,
T.
Geiger
,
C.
Wolz
,
K.
Ohlsen
,
M.
Otto
, et al
.
2014
.
Cytoplasmic replication of Staphylococcus aureus upon phagosomal escape triggered by phenol-soluble modulin α.
Cell. Microbiol.
16
:
451
465
.
115
Bar-Shavit
,
Z.
2008
.
Taking a toll on the bones: regulation of bone metabolism by innate immune regulators.
Autoimmunity
41
:
195
203
.
116
Kassem
,
A.
,
P.
Henning
,
P.
Lundberg
,
P. P.
Souza
,
C.
Lindholm
,
U. H.
Lerner
.
2015
.
Porphyromonas gingivalis stimulates bone resorption by enhancing RANKL (receptor activator of NF-κB ligand) through activation of Toll-like receptor 2 in osteoblasts.
J. Biol. Chem.
290
:
20147
20158
.
117
Kassem
,
A.
,
C.
Lindholm
,
U. H.
Lerner
.
2016
.
Toll-like receptor 2 stimulation of osteoblasts mediates Staphylococcus aureus induced bone resorption and osteoclastogenesis through enhanced RANKL.
PLoS One
11
:
e0156708
.
118
Zhang
,
P.
,
J.
Liu
,
Q.
Xu
,
G.
Harber
,
X.
Feng
,
S. M.
Michalek
,
J.
Katz
.
2011
.
TLR2-dependent modulation of osteoclastogenesis by Porphyromonas gingivalis through differential induction of NFATc1 and NF-kappaB.
J. Biol. Chem.
286
:
24159
24169
.
119
Krisher
,
T.
,
Z.
Bar-Shavit
.
2014
.
Regulation of osteoclastogenesis by integrated signals from toll-like receptors.
J. Cell. Biochem.
115
:
2146
2154
.
120
Kim
,
P. D.
,
X.
Xia-Juan
,
K. E.
Crump
,
T.
Abe
,
G.
Hajishengallis
,
S. E.
Sahingur
.
2015
.
Toll-like receptor 9-mediated inflammation triggers alveolar bone loss in experimental murine periodontitis.
Infect. Immun.
83
:
2992
3002
.
121
Varoga
,
D.
,
M.
Tohidnezhad
,
F.
Paulsen
,
C. J.
Wruck
,
L.
Brandenburg
,
R.
Mentlein
,
S.
Lippross
,
J.
Hassenpflug
,
L.
Besch
,
M.
Müller
, et al
.
2008
.
The role of human beta-defensin-2 in bone.
J. Anat.
213
:
749
757
.
122
Warnke
,
P. H.
,
I. N.
Springer
,
P. A.
Russo
,
J.
Wiltfang
,
H.
Essig
,
M.
Kosmahl
,
E.
Sherry
,
Y.
Acil
.
2006
.
Innate immunity in human bone.
Bone
38
:
400
408
.
123
Boyle
,
W. J.
,
W. S.
Simonet
,
D. L.
Lacey
.
2003
.
Osteoclast differentiation and activation.
Nature
423
:
337
342
.
124
Kadono
,
Y.
,
F.
Okada
,
C.
Perchonock
,
H. D.
Jang
,
S. Y.
Lee
,
N.
Kim
,
Y.
Choi
.
2005
.
Strength of TRAF6 signalling determines osteoclastogenesis.
EMBO Rep.
6
:
171
176
.
125
Wang
,
Q.
,
R.
Dziarski
,
C. J.
Kirschning
,
M.
Muzio
,
D.
Gupta
.
2001
.
Micrococci and peptidoglycan activate TLR2-->MyD88-->IRAK-->TRAF-->NIK-->IKK-->NF-kappaB signal transduction pathway that induces transcription of interleukin-8.
Infect. Immun.
69
:
2270
2276
.
126
Yang
,
J.
,
Y. H.
Ryu
,
C. H.
Yun
,
S. H.
Han
.
2009
.
Impaired osteoclastogenesis by staphylococcal lipoteichoic acid through Toll-like receptor 2 with partial involvement of MyD88.
J. Leukoc. Biol.
86
:
823
831
.
127
Chen
,
Q.
,
T.
Hou
,
F.
Luo
,
X.
Wu
,
Z.
Xie
,
J.
Xu
.
2014
.
Involvement of toll-like receptor 2 and pro-apoptotic signaling pathways in bone remodeling in osteomyelitis.
Cell. Physiol. Biochem.
34
:
1890
1900
.
128
Mohamed
,
W.
,
E.
Domann
,
T.
Chakraborty
,
G.
Mannala
,
K. S.
Lips
,
C.
Heiss
,
R.
Schnettler
,
V.
Alt
.
2016
.
TLR9 mediates S. aureus killing inside osteoblasts via induction of oxidative stress.
BMC Microbiol.
16
:
230
.
129
Hamza
,
T.
,
B.
Li
.
2014
.
Differential responses of osteoblasts and macrophages upon Staphylococcus aureus infection.
BMC Microbiol.
14
:
207
.
130
Marriott
,
I.
,
D. M.
Rati
,
S. H.
McCall
,
S. L.
Tranguch
.
2005
.
Induction of Nod1 and Nod2 intracellular pattern recognition receptors in murine osteoblasts following bacterial challenge.
Infect. Immun.
73
:
2967
2973
.
131
Chauhan
,
V. S.
,
I.
Marriott
.
2010
.
Differential roles for NOD2 in osteoblast inflammatory immune responses to bacterial pathogens of bone tissue.
J. Med. Microbiol.
59
:
755
762
.
132
Yang
,
S.
,
N.
Takahashi
,
T.
Yamashita
,
N.
Sato
,
M.
Takahashi
,
M.
Mogi
,
T.
Uematsu
,
Y.
Kobayashi
,
Y.
Nakamichi
,
K.
Takeda
, et al
.
2005
.
Muramyl dipeptide enhances osteoclast formation induced by lipopolysaccharide, IL-1 alpha, and TNF-alpha through nucleotide-binding oligomerization domain 2-mediated signaling in osteoblasts.
J. Immunol.
175
:
1956
1964
.
133
Shimada
,
T.
,
B. G.
Park
,
A. J.
Wolf
,
C.
Brikos
,
H. S.
Goodridge
,
C. A.
Becker
,
C. N.
Reyes
,
E. A.
Miao
,
A.
Aderem
,
F.
Götz
, et al
.
2010
.
Staphylococcus aureus evades lysozyme-based peptidoglycan digestion that links phagocytosis, inflammasome activation, and IL-1beta secretion.
Cell Host Microbe
7
:
38
49
.
134
Alippe
,
Y.
,
C.
Wang
,
B.
Ricci
,
J.
Xiao
,
C.
Qu
,
W.
Zou
,
D. V.
Novack
,
Y.
Abu-Amer
,
R.
Civitelli
,
G.
Mbalaviele
.
2017
.
Bone matrix components activate the NLRP3 inflammasome and promote osteoclast differentiation.
Sci. Rep.
7
:
6630
.
135
Kim
,
H. K.
,
D.
Missiakas
,
O.
Schneewind
.
2014
.
Mouse models for infectious diseases caused by Staphylococcus aureus.
J. Immunol. Methods
410
:
88
99
.
136
Yoong
,
P.
,
V. J.
Torres
.
2013
.
Animal models and imaging technologies: paving the way towards insights into Staphylococcus aureus-induced osteomyelitis.
Future Microbiol.
8
:
1515
1518
.
137
Cassat
,
J. E.
,
E. P.
Skaar
.
2013
.
Recent advances in experimental models of osteomyelitis.
Expert Rev. Anti Infect. Ther.
11
:
1263
1265
.
138
Gillaspy
,
A. F.
,
S. G.
Hickmon
,
R. A.
Skinner
,
J. R.
Thomas
,
C. L.
Nelson
,
M. S.
Smeltzer
.
1995
.
Role of the accessory gene regulator (agr) in pathogenesis of staphylococcal osteomyelitis.
Infect. Immun.
63
:
3373
3380
.
139
Niska
,
J. A.
,
J. A.
Meganck
,
J. R.
Pribaz
,
J. H.
Shahbazian
,
E.
Lim
,
N.
Zhang
,
B. W.
Rice
,
A.
Akin
,
R. I.
Ramos
,
N. M.
Bernthal
, et al
.
2012
.
Monitoring bacterial burden, inflammation and bone damage longitudinally using optical and μCT imaging in an orthopaedic implant infection in mice.
PLoS One
7
:
e47397
.
140
Yoshii
,
T.
,
S.
Magara
,
D.
Miyai
,
H.
Nishimura
,
E.
Kuroki
,
S.
Furudoi
,
T.
Komori
,
C.
Ohbayashi
.
2002
.
Local levels of interleukin-1beta, -4, -6 and tumor necrosis factor alpha in an experimental model of murine osteomyelitis due to staphylococcus aureus.
Cytokine
19
:
59
65
.
141
Dapunt
,
U.
,
S.
Maurer
,
T.
Giese
,
M. M.
Gaida
,
G. M.
Hänsch
.
2014
.
The macrophage inflammatory proteins MIP1α (CCL3) and MIP2α (CXCL2) in implant-associated osteomyelitis: linking inflammation to bone degradation.
Mediators Inflamm.
2014
:
728619
.
142
Bost
,
K. L.
,
J. L.
Bento
,
C. C.
Petty
,
L. W.
Schrum
,
M. C.
Hudson
,
I.
Marriott
.
2001
.
Monocyte chemoattractant protein-1 expression by osteoblasts following infection with Staphylococcus aureus or Salmonella.
J. Interferon Cytokine Res.
21
:
297
304
.
143
Sato
,
N.
,
N.
Takahashi
,
K.
Suda
,
M.
Nakamura
,
M.
Yamaki
,
T.
Ninomiya
,
Y.
Kobayashi
,
H.
Takada
,
K.
Shibata
,
M.
Yamamoto
, et al
.
2004
.
MyD88 but not TRIF is essential for osteoclastogenesis induced by lipopolysaccharide, diacyl lipopeptide, and IL-1alpha.
J. Exp. Med.
200
:
601
611
.
144
Bernthal
,
N. M.
,
J. R.
Pribaz
,
A. I.
Stavrakis
,
F.
Billi
,
J. S.
Cho
,
R. I.
Ramos
,
K. P.
Francis
,
Y.
Iwakura
,
L. S.
Miller
.
2011
.
Protective role of IL-1β against post-arthroplasty Staphylococcus aureus infection.
J. Orthop. Res.
29
:
1621
1626
.
145
Hultgren
,
O. H.
,
L.
Svensson
,
A.
Tarkowski
.
2002
.
Critical role of signaling through IL-1 receptor for development of arthritis and sepsis during Staphylococcus aureus infection.
J. Immunol.
168
:
5207
5212
.
146
Kim
,
J.
,
J.
Yang
,
O. J.
Park
,
S. S.
Kang
,
W. S.
Kim
,
K.
Kurokawa
,
C. H.
Yun
,
H. H.
Kim
,
B. L.
Lee
,
S. H.
Han
.
2013
.
Lipoproteins are an important bacterial component responsible for bone destruction through the induction of osteoclast differentiation and activation.
J. Bone Miner. Res.
28
:
2381
2391
.
147
Flammier
,
S.
,
J. P.
Rasigade
,
C.
Badiou
,
T.
Henry
,
F.
Vandenesch
,
F.
Laurent
,
S.
Trouillet-Assant
.
2016
.
Human monocyte-derived osteoclasts are targeted by staphylococcal pore-forming toxins and superantigens.
PLoS One
11
:
e0150693
.
148
Claro
,
T.
,
A.
Widaa
,
C.
McDonnell
,
T. J.
Foster
,
F. J.
O’Brien
,
S. W.
Kerrigan
.
2013
.
Staphylococcus aureus protein A binding to osteoblast tumour necrosis factor receptor 1 results in activation of nuclear factor kappa B and release of interleukin-6 in bone infection.
Microbiology
159
:
147
154
.
149
Crémieux
,
A. C.
,
O.
Dumitrescu
,
G.
Lina
,
C.
Vallee
,
J. F.
Côté
,
M.
Muffat-Joly
,
T.
Lilin
,
J.
Etienne
,
F.
Vandenesch
,
A.
Saleh-Mghir
.
2009
.
Panton-valentine leukocidin enhances the severity of community-associated methicillin-resistant Staphylococcus aureus rabbit osteomyelitis.
PLoS One
4
:
e7204
.
150
Crémieux
,
A. C.
,
A.
Saleh-Mghir
,
C.
Danel
,
F.
Couzon
,
O.
Dumitrescu
,
T.
Lilin
,
C.
Perronne
,
J.
Etienne
,
G.
Lina
,
F.
Vandenesch
.
2014
.
α-Hemolysin, not Panton-Valentine leukocidin, impacts rabbit mortality from severe sepsis with methicillin-resistant Staphylococcus aureus osteomyelitis.
J. Infect. Dis.
209
:
1773
1780
.
151
Wang
,
R.
,
K. R.
Braughton
,
D.
Kretschmer
,
T. H.
Bach
,
S. Y.
Queck
,
M.
Li
,
A. D.
Kennedy
,
D. W.
Dorward
,
S. J.
Klebanoff
,
A.
Peschel
, et al
.
2007
.
Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA.
Nat. Med.
13
:
1510
1514
.
152
Syed
,
A. K.
,
T. J.
Reed
,
K. L.
Clark
,
B. R.
Boles
,
J. M.
Kahlenberg
.
2015
.
Staphlyococcus aureus phenol-soluble modulins stimulate the release of proinflammatory cytokines from keratinocytes and are required for induction of skin inflammation. [Published erratum appears in 2015 Infect. Immun. 83: 4450.]
Infect. Immun.
83
:
3428
3437
.
153
Brown
,
E. L.
,
O.
Dumitrescu
,
D.
Thomas
,
C.
Badiou
,
E. M.
Koers
,
P.
Choudhury
,
V.
Vazquez
,
J.
Etienne
,
G.
Lina
,
F.
Vandenesch
,
M. G.
Bowden
.
2009
.
The Panton-Valentine leukocidin vaccine protects mice against lung and skin infections caused by Staphylococcus aureus USA300.
Clin. Microbiol. Infect.
15
:
156
164
.
154
Bocchini
,
C. E.
,
K. G.
Hulten
,
E. O.
Mason
Jr.
,
B. E.
Gonzalez
,
W. A.
Hammerman
,
S. L.
Kaplan
.
2006
.
Panton-Valentine leukocidin genes are associated with enhanced inflammatory response and local disease in acute hematogenous Staphylococcus aureus osteomyelitis in children.
Pediatrics
117
:
433
440
.
155
Marciano
,
B. E.
,
C.
Spalding
,
A.
Fitzgerald
,
D.
Mann
,
T.
Brown
,
S.
Osgood
,
L.
Yockey
,
D. N.
Darnell
,
L.
Barnhart
,
J.
Daub
, et al
.
2015
.
Common severe infections in chronic granulomatous disease.
Clin. Infect. Dis.
60
:
1176
1183
.
156
von Bernuth
,
H.
,
C.
Picard
,
Z.
Jin
,
R.
Pankla
,
H.
Xiao
,
C. L.
Ku
,
M.
Chrabieh
,
I. B.
Mustapha
,
P.
Ghandil
,
Y.
Camcioglu
, et al
.
2008
.
Pyogenic bacterial infections in humans with MyD88 deficiency.
Science
321
:
691
696
.
157
Picard
,
C.
,
A.
Puel
,
M.
Bonnet
,
C. L.
Ku
,
J.
Bustamante
,
K.
Yang
,
C.
Soudais
,
S.
Dupuis
,
J.
Feinberg
,
C.
Fieschi
, et al
.
2003
.
Pyogenic bacterial infections in humans with IRAK-4 deficiency.
Science
299
:
2076
2079
.
158
Israel
,
L.
,
Y.
Wang
,
K.
Bulek
,
E.
Della Mina
,
Z.
Zhang
,
V.
Pedergnana
,
M.
Chrabieh
,
N. A.
Lemmens
,
V.
Sancho-Shimizu
,
M.
Descatoire
, et al
.
2017
.
Human adaptive immunity rescues an inborn error of innate immunity.
Cell
168
:
789
-
800.e10
.
159
Bonilla
,
F. A.
,
R. S.
Geha
.
2003
.
12. Primary immunodeficiency diseases.
J. Allergy Clin. Immunol.
111
(
2
Suppl.
):
S571
S581
.
160
Andrews
,
T.
,
K. E.
Sullivan
.
2003
.
Infections in patients with inherited defects in phagocytic function.
Clin. Microbiol. Rev.
16
:
597
621
.
161
Tsezou
,
A.
,
L.
Poultsides
,
F.
Kostopoulou
,
E.
Zintzaras
,
M.
Satra
,
S.
Kitsiou-Tzeli
,
K. N.
Malizos
.
2008
.
Influence of interleukin 1alpha (IL-1alpha), IL-4, and IL-6 polymorphisms on genetic susceptibility to chronic osteomyelitis.
Clin. Vaccine Immunol.
15
:
1888
1890
.
162
Menne
,
E. N.
,
R. Y.
Sonabend
,
E. O.
Mason
,
L. B.
Lamberth
,
W. A.
Hammerman
,
C. G.
Minard
,
S. L.
Kaplan
,
K. G.
Hulten
.
2012
.
Staphylococcus aureus infections in pediatric patients with diabetes mellitus.
J. Infect.
65
:
135
141
.
163
Rich
,
J.
,
J. C.
Lee
.
2005
.
The pathogenesis of Staphylococcus aureus infection in the diabetic NOD mouse.
Diabetes
54
:
2904
2910
.
164
Bourke
,
C. D.
,
J. A.
Berkley
,
A. J.
Prendergast
.
2016
.
Immune dysfunction as a cause and consequence of malnutrition.
Trends Immunol.
37
:
386
398
.
165
Mihu
,
C. N.
,
J.
Schaub
,
S.
Kesh
,
A.
Jakubowski
,
K.
Sepkowitz
,
E. G.
Pamer
,
G. A.
Papanicolaou
.
2008
.
Risk factors for late Staphylococcus aureus bacteremia after allogeneic hematopoietic stem cell transplantation: a single-institution, nested case-controlled study.
Biol. Blood Marrow Transplant.
14
:
1429
1433
.
166
Drapeau
,
C. M.
,
C.
Angeletti
,
A.
Festa
,
N.
Petrosillo
.
2007
.
Role of previous hospitalization in clinically-significant MRSA infection among HIV-infected inpatients: results of a case-control study.
BMC Infect. Dis.
7
:
36
.
167
Jones
,
K. D.
,
J. A.
Berkley
.
2014
.
Severe acute malnutrition and infection.
Paediatr. Int. Child Health
34
(
Suppl. 1
):
S1
S29
.
168
Maraqa
,
N. F.
,
L.
Aigbivbalu
,
C.
Masnita-Iusan
,
P.
Wludyka
,
Z.
Shareef
,
C.
Bailey
,
M. H.
Rathore
.
2011
.
Prevalence of and risk factors for methicillin-resistant Staphylococcus aureus colonization and infection among infants at a level III neonatal intensive care unit.
Am. J. Infect. Control
39
:
35
41
.
169
Rathore
,
M. H.
,
M. W.
Kline
.
1989
.
Community-acquired methicillin-resistant Staphylococcus aureus infections in children.
Pediatr. Infect. Dis. J.
8
:
645
647
.
170
Afessa
,
B.
,
S. G.
Peters
.
2006
.
Major complications following hematopoietic stem cell transplantation.
Semin. Respir. Crit. Care Med.
27
:
297
309
.
171
Fulop
,
T.
,
D.
Tessier
,
A.
Carpentier
.
2006
.
The metabolic syndrome.
Pathol. Biol.
54
:
375
386
.
172
Wicker
,
L. S.
,
J.
Clark
,
H. I.
Fraser
,
V. E.
Garner
,
A.
Gonzalez-Munoz
,
B.
Healy
,
S.
Howlett
,
K.
Hunter
,
D.
Rainbow
,
R. L.
Rosa
, et al
.
2005
.
Type 1 diabetes genes and pathways shared by humans and NOD mice.
J. Autoimmun.
25
(
Suppl.
):
29
33
.
173
Pickup
,
J. C.
2004
.
Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes.
Diabetes Care
27
:
813
823
.
174
Lee
,
Y. H.
,
R. E.
Pratley
.
2005
.
The evolving role of inflammation in obesity and the metabolic syndrome.
Curr. Diab. Rep.
5
:
70
75
.
175
Wisse
,
B. E.
2004
.
The inflammatory syndrome: the role of adipose tissue cytokines in metabolic disorders linked to obesity.
J. Am. Soc. Nephrol.
15
:
2792
2800
.
176
Hajishengallis
,
G.
2010
.
Too old to fight? Aging and its toll on innate immunity.
Mol. Oral Microbiol.
25
:
25
37
.
177
Bruunsgaard
,
H.
,
M.
Pedersen
,
B. K.
Pedersen
.
2001
.
Aging and proinflammatory cytokines.
Curr. Opin. Hematol.
8
:
131
136
.
178
Spaan
,
A. N.
,
J. A. G.
van Strijp
,
V. J.
Torres
.
2017
.
Leukocidins: staphylococcal bi-component pore-forming toxins find their receptors.
Nat. Rev. Microbiol.
15
:
435
447
.
179
Spaan
,
A. N.
,
A.
Schiepers
,
C. J.
de Haas
,
D. D.
van Hooijdonk
,
C.
Badiou
,
H.
Contamin
,
F.
Vandenesch
,
G.
Lina
,
N. P.
Gerard
,
C.
Gerard
, et al
.
2015
.
Differential interaction of the staphylococcal toxins Panton-Valentine leukocidin and γ-hemolysin CB with human C5a receptors.
J. Immunol.
195
:
1034
1043
.
180
Thomsen
,
I. P.
,
G.
Sapparapu
,
D. B. A.
James
,
J. E.
Cassat
,
M.
Nagarsheth
,
N.
Kose
,
N.
Putnam
,
K. M.
Boguslawski
,
L. S.
Jones
,
J. B.
Wood
, et al
.
2017
.
Monoclonal antibodies against the Staphylococcus aureus bicomponent leukotoxin AB isolated following invasive human infection reveal diverse binding and modes of action.
J. Infect. Dis.
215
:
1124
1131
.
181
Hendrix
,
A. S.
,
T. J.
Spoonmore
,
A. D.
Wilde
,
N. E.
Putnam
,
N. D.
Hammer
,
D. J.
Snyder
,
S. A.
Guelcher
,
E. P.
Skaar
,
J. E.
Cassat
.
2016
.
Repurposing the nonsteroidal anti-inflammatory drug diflunisal as an osteoprotective, antivirulence therapy for Staphylococcus aureus osteomyelitis.
Antimicrob. Agents Chemother.
60
:
5322
5330
.
182
Zinkernagel
,
A. S.
,
C.
Peyssonnaux
,
R. S.
Johnson
,
V.
Nizet
.
2008
.
Pharmacologic augmentation of hypoxia-inducible factor-1alpha with mimosine boosts the bactericidal capacity of phagocytes.
J. Infect. Dis.
197
:
214
217
.

The authors have no financial conflicts of interest.