Intestinal inflammation is a key element in inflammatory bowel disease and is related to a combination of factors, including genetics, mucosal barrier dysfunction, bacteria translocation, deleterious host–microbe interactions, and dysregulated immune responses. Over the past decade, it has been appreciated that these inflammatory lesions are associated with profound tissue hypoxia. Interestingly, an endogenous adaptive response under the control of hypoxia signaling is enhancement in adenosine signaling, which impacts these different endpoints, including promoting barrier function and encouraging anti-inflammatory activity. In this review, we discuss the hypoxia–adenosine link in inflammatory bowel disease, intestinal ischemia/reperfusion injury, and colon cancer. In addition, we provide a summary of clinical implications of hypoxia and adenosine signaling in intestinal inflammation and disease.

Inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis, is a chronic disorder of the intestinal tract characterized by intestinal inflammation and epithelial injury. The exact set of causes of IBD remains unclear. However, significant evidence indicates dysfunction of the mucosal immune system plays an important role in the pathogenesis of IBD. Strong evidence also implicates genetic susceptibility, deleterious host–microbe interactions, mucosal barrier dysfunction, and environmental factors (1, 2). There is also now significant evidence that these inflamed lesions become profoundly hypoxic. Inflamed tissues experience significant changes in tissue metabolism. Oxygen supply and other metabolic factors are limited to tissues because of vascular occlusion, damaged blood supply, and/or compression of the tissue (3, 4). The metabolic demand of inflammatory cells also is a burden. For example, activated neutrophils consume significant amounts of oxygen, so much so that they imprint on the tissue environment, making it hypoxic (5). Over the past decade, it has been appreciated that inflammatory hypoxia [tissue inflammation leading to tissue hypoxia (3)] increases extracellular adenosine/adenosine signaling and serves as an essential endogenous anti-inflammatory pathway that protects tissues on multiple levels (6, 7). Although hypoxia is an inflammatory stimulus, there are examples of low oxygen promoting tissue protection (815). In this review, we discuss the hypoxia–adenosine link, particularly hypoxia-inducible factors (HIFs) in regulating adenosine pathway genes. We also discuss the hypoxia–adenosine link in IBD, intestinal ischemia/reperfusion (I/R) injury, and colon cancer, and conclude with a summary of clinical implications of these pathways in intestinal inflammation and disease.

Extracellular adenosine and adenosine signaling has shown to be an essential endogenous anti-inflammatory pathway in a number of conditions and diseases, including acute lung injury (1621), myocardial injury (14, 2225), intestinal I/R injury (2628), and IBD (11, 2933). During inflammation, ATP is released from stressed, apoptotic and/or necrotic cells, and bacteria (34, 35). ATP is converted to adenosine by cell surface ectonucleotidases, ectonucleoside triphosphate diphosphohydrolase-1 (CD39), and ecto-5′ nucleotidase (CD73). CD39 generates ADP and AMP from ATP, and CD73 generates adenosine from AMP. Adenosine signals through membrane-spanning adenosine receptors, A1R, A2AR, A2BR, and A3R, and is terminated by adenosine re-entering the cell through equilibrative nucleoside transporters (ENTs) or concentrative nucleoside transporters or through activity of adenosine deaminase (ADA) (3436). A2BR is the predominant adenosine receptor expressed on intestinal epithelial cells (32, 33, 37), whereas A2AR is expressed by most immune cells (34).

Mucosal epithelial cells.

Epithelial cells play an important role in IBD pathogenesis. The breakdown of their barrier encourages bacterial translocation and promotes the release of proinflammatory cytokines, exciting tissue-damaging immune cells. The role of adenosine signaling in protecting tissue barriers was appreciated three decades ago, beginning with outstanding studies on polymorphonuclear leukocyte (PMN; neutrophil)-derived secretagogue (3840). PMNs were found to release purine nucleotides [AMP (40) and ATP (41)] during transmigration. Subsequently, ATP/AMP is converted to adenosine by endothelial/epithelial cell CD39 or CD39 family members and CD73 and tissue barriers resealed by A2BR (39, 40).

Adenosine signaling induces barrier protection by inducing actin polymerization (42) and through changes in the actin cytoskeleton, involving vasodilator-stimulated phosphoprotein (43, 44). Indeed, a significant phenotype of mice deficient for adenosine pathway genes is barrier dysfunction. For example, wild-type mice gavaged with CD73 inhibitor, APCP, experience severe intestinal epithelial barrier permeability in hypoxia (12). Similarly, CD73- (13) and A2BR (8)-deficient mice exposed to low oxygen suffer massive barrier breakdown and inflammatory cell accumulation in several tissues. As well, CD39- (29) and CD73 (30)-deficient mice and mice with global or tissue-specific deletion of A2BR (32, 33) suffer more severe disease during experimental colitis, which is associated with the breakdown of the intestinal epithelial barrier. A2BR on intestinal epithelial cells also regulates inflammatory cytokines, limiting immune cell infiltration. For example, cytokine IL-10 levels are reduced in inflamed mucosa from A2BR-deficient mice (33). The anti-inflammatory role of IL-10 is significant in intestinal inflammation; spontaneous colitis develops in IL-10–deficient mice (45). Extracellular adenosine/A2BR also reduces intestinal epithelial cell expression of proinflammatory cytokines IL-8 (46), IFN-α, IL-1β, and TNF-α (47). Studies using bone marrow chimeras show A2BR activity on nonimmune cells is essential in suppressing inflammatory cytokine and chemokine production during sepsis (48). A2BR activity on intestinal epithelial cells also promotes electrogenic chloride secretion, which flushes the lumen of toxins and pathogens (secretory diarrhea) (37, 38), and is another level of protection during intestinal inflammation. Loose stools are a clinical concern with IBD. Accordingly, there is some concern of severe diarrhea being a side effect with A2BR agonists.

Innate immune cells.

Besides epithelial barrier breakdown, dysfunction of the mucosal immune system is significant in the pathogenesis of IBD. Several lines of evidence support A2AR on immune cells promotes profound endogenous anti-inflammatory responses (49, 50). Accordingly, interests in harnessing the immunosuppressive actions of extracellular adenosine/adenosine signaling (e.g., graft-versus-host disease and IBD) as well as inhibiting this response (e.g., tumors) for therapeutic benefit have been a recent topic of interest. A2AR activity on neutrophils inhibits neutrophil adhesion to and killing of endothelial/epithelial cells, as well as modulates the production and release of proinflammatory cytokines (e.g., TNF-α) (51), chemokines (52), and PGs (e.g., PGE2) (53, 54). A2AR activity on neutrophils, en route to sites of inflammation, is tissue protective by inhibiting the release of toxic oxygen species (55, 56). A2AR activity on macrophages limits their production of proinflammatory cytokines (e.g., IL-12 and TNF-α) and promotes their release of anti-inflammatory cytokine, IL-10 (5761). Similarly, A2AR on mature dendritic cells shifts their cytokine profile, reducing IL-12, IL-6, and IFN-α (proinflammatory) and increasing IL-10 (6264). A2BR activity on macrophages increases IL-10 (65) and also dampens TNF-α (59); dampening TNF-α appears operational only when not masked by A2AR (59). A2AR and A2BR activity on macrophages can also promote alternative macrophage activation, which may be important in IBD (6668). In IBD, anti-inflammatory factor netrin-1 interacts with A2BR, which dampens the infiltration of neutrophils into the intestinal mucosa (11, 31, 69). Adenosine receptors A1R and A3R are less described, but show to support proinflammatory events (e.g., chemotaxis) leading up to A2AR and A2BR activity (56). Impaired innate immunity is implicated particularly in Crohn’s disease (70).

Adaptive immune cells.

T cells are particularly sensitive to the immunosuppression/immunomodulatory activity of A2AR. During inflammation, A2AR is upregulated on effector T cells. Subsequent activation of A2AR on these cells inhibits their proliferation, expansion, cytotoxic activity, and cytokine production (7173). A2AR activity decreases both Th1 and Th2 development and effector function (74). A2AR activity on these effector T cells also enhances the formation of regulatory T cells (Tregs) and their expression of programmed cell death protein 1 (PD-1) and CTLA-4, negative regulators of inflammation (75). Naive T cells express CD73 and are downregulated upon activation and differentiation, whereas Tregs express both CD39 and CD73 (76). Studies by Simon Robson and colleagues (77) have shown an essential regulatory loop, whereby extracellular adenosine generated by Tregs activates A2AR on effector T cells, suppressing effector T cell activity. Extracellular adenosine also activates A2AR on Tregs, promoting their expansion and immunoregulatory activity (self-reinforcing loop) (78). Accordingly, A2AR deficiency on Tregs reduces their immunosuppressive efficacy (79). A2AR agonists prevent colitis induced by pathogenic T cells in the absence of Tregs (80), whereas adoptive transfer studies show Tregs from wild-type mice fail to prevent colitis induced by pathogenic T cells from A2AR-deficient mice (80). A2AR on myeloid cells is also required for controlling intestinal inflammation, because cotransfer of Tregs and pathogenic T cells from wild-type mice into rag/A2AR double-deficient mice still leads to colitis (80). Interestingly, Th17 cells function similar to Tregs to suppress proinflammatory responses, as well as show effector Th17 features, such as producing IL-17 and low levels of A2AR. CD39 is involved in the transition of Th17 cells into suppressor-like Th17 cells (81, 82). Many studies are directed at understanding the immunopathogenesis of IBD and relatedness of adenosine signaling. These studies will provide greatly to new ideas for treating intestinal inflammation.

Inflamed lesions are often severely hypoxic. Tissues have evolved essential mechanisms to detect and adapt to low oxygen. Prolyl hydroxylases are essential to sensing oxygen and HIFs to initiating adaptive responses. HIFs are αβ-heterodimeric transcription factors that interact with hundreds of genes that encode glycolytic enzymes, inhibit mitochondrial respiration, regulate apoptosis, modulate inflammation, and promote angiogenesis (83). Oxygen-dependent prolyl hydroxylases (PHDs) and von Hippel–Lindau (VHL), an E3 ubiquitin ligase, control the stability of HIFs (8488). In normoxia, HIF-1α and HIF-2α are hydroxylated at proline residues by PHDs, promoting their ubiquitination by VHL and proteasomal degradation (89). Mice deficient in PHDs or VHL show features of increased HIF activity, including increased vascularization and high levels of erythropoiesis (9094). Factor-inhibiting HIF (FIH), an oxygen-dependent asparaginyl hydroxylase, also controls HIFs through hydroxylation of asparagyl residues of α subunits, which blocks the association of HIFs with transcriptional coactivators (95, 96). In hypoxia, PHDs and FIH activity are inhibited by the low availability of oxygen. HIF-α subunits combine with HIF-β and subsequently bind to HIF-responsive elements (HREs) in gene promoters. HIF-1α and HIF-2α share a few, but largely have distinct target genes (97, 98). Recently, HIF-2α has been indicated as having a nontranscriptional role, indicating that much more remains to be discovered regarding HIF activity. HIFs also can be stabilized by inflammatory factors, such as bacterial component LPS, involving TLR4 (99) as well as bacterial release of iron-binding siderophores, which stabilize HIFs by forming chelated complexes with iron ions, inhibiting PHDs (100). Although PHDs require oxygen as a cofactor, iron is also necessary. PHDs are not limited to targeting HIFs. For example, studies by Cormac Taylor have shown that IKKβ (subunit of IκB kinase complex, member of the NF-κβ pathway) contains a conserved prolyl hydroxylation site similar to HIF-1α and that hypoxia increases IKKβ stability through inhibition of IKKβ hydroxylation by PHD1, directing NF-κB disassociation from its inhibitor, thus promoting NF-κB to induce proinflammatory gene expression (101). NF-κβ can directly regulate HIF-1α and, in turn, NF-κβ can directly regulate HIF-1α (102). Moreover, studies involving macrophages demonstrate TNF-α stabilizes HIF-1α in normoxia (103). Recent studies involving type 1 regulatory cells, aryl hydrocarbon receptor, and CD39 provide additional insight into hypoxia signaling in integrating immunological, metabolic, and environmental signals to regulate immune responses (104). Taken together, HIF signaling in epithelial and immune cells is essential to tissue adaptation to low oxygen.

The normal intestinal mucosa exists in a state of hypoxia (physiological hypoxia) (6, 105, 106) and has shown to be particularly resistant to low oxygen (105), a feature important to priming the tissue for oxygen changes and adaptation. Accordingly, HIFs are found stabilized in normal gut mucosa and are elevated in patients with IBD (107). While searching for barrier-protective pathways, Sean Colgan (12) recognized CD73 and CD39 were increased several fold in hypoxic intestinal mucosa and that CD73 is a target of HIF-1α. Extensions of these studies identified that Sp1 increases CD39 expression in hypoxia (14). Sp1 is strongly implicated in targeting hypoxia adaptive genes, such as vascular endothelial growth factor (108). In contrast, HIFs repress ENT1 (9) and ENT2 (109) expression and reduce the conversion of adenosine to AMP by adenosine kinase (AK) (110, 111). AK is repressed by HIF-1α (111). ENT1 and ENT2 are bidirectional adenosine transporters, controlling adenosine efflux or intracellular uptake according to the concentration gradient (112). Studies involving radiolabeled adenosine showed extracellular adenosine uptake slows in hypoxia and that both ENT1 and ENT2 expression significantly decrease in intestinal epithelial models. ENT1 and ENT2 promoters also contain HREs and are targets of HIF-1α (9, 109). Consistent is that intestinal epithelial-targeted HIF-1α–deficient mice show increased expression of ENTs (9, 109). Moreover, the ENT inhibitor dipyridamole promotes intestinal epithelial barrier function and attenuates mucosal inflammation in murine models of hypoxia (109). Collectively, ENT1 and ENT2 downregulation by HIFs are significant in raising the levels of extracellular adenosine/adenosine signaling during hypoxia. Indeed, dipyridamole tissue protection is reduced in A2BR-deficient mice (18). A2BR appears to have a select role in barrier protection in hypoxia (8). Intestinal epithelial models show A2BR is an HIF-1α target (113). HIF-2α appears to target A2AR (114). Netrin-1 (which interacts with A2BR) is also targeted by HIF-1α (11). The tissue environment also promotes HIF-mediated adenosine signaling. For example, low oxygen or tissue inflammation greatly favors the release of extracellular ATP/ADP (3, 35). As well, colitis studies show that transmigrating neutrophils consume local oxygen, making the tissue even more hypoxic (5). Inflammation in general also induces tissue hypoxia. To summarize, hypoxia/HIFs increase adenosine pathway gene expression that supports an increase in extracellular adenosine/adenosine signaling and at the same time decreases genes that reduce extracellular adenosine levels/adenosine signaling (Fig. 1).

FIGURE 1.

Increased extracellular adenosine and adenosine signaling by hypoxia. In normoxia, the concentration of adenine nucleosides (ATP, ADP, and AMP) at the cell surface is low. Extracellular ATP is converted to adenosine by two phosphohydrolysis reactions by cell surface nucleotidases, CD39 and CD73. CD39 converts ATP/ADP to adenosine, and CD73 converts AMP to adenosine. Adenosine can activate adenosine receptors (A1R, A2AR, A2BR, and A3R), be transported into the cell via ENTs, or be converted to inosine at the cell surface by CD26-bound ADA. In normoxia, adenosine is primarily distributed between high-affinity adenosine receptors (e.g., A1R, A2AR, and A3R) and ENTs. In hypoxia, adenosine signaling is enhanced. Hypoxia increases the release of extracellular ATP/ADP via lytic and nonlytic pathways. In addition, HIFs upregulate (indicated by positive circles) adenosine metabolizing and signaling genes, including CD73 and adenosine receptors (e.g., A2AR and A2BR), while downregulating (indicated by negative circles) genes that dampen adenosine signaling, including ADA, ENTs, and AK. CD39 is upregulated in hypoxia by Sp1. In the gut, CD39 is largely restricted to immune cells and vascular endothelium. ATP/ADP metabolism on epithelial cells may involve ectonucleoside triphosphate diphosphohydrolase 7 (ENTPD7), a CD39 family member, and alkaline phosphatases. Together, these events increase extracellular adenosine and adenosine signaling, which dampens tissue inflammation and protects tissue barriers.

FIGURE 1.

Increased extracellular adenosine and adenosine signaling by hypoxia. In normoxia, the concentration of adenine nucleosides (ATP, ADP, and AMP) at the cell surface is low. Extracellular ATP is converted to adenosine by two phosphohydrolysis reactions by cell surface nucleotidases, CD39 and CD73. CD39 converts ATP/ADP to adenosine, and CD73 converts AMP to adenosine. Adenosine can activate adenosine receptors (A1R, A2AR, A2BR, and A3R), be transported into the cell via ENTs, or be converted to inosine at the cell surface by CD26-bound ADA. In normoxia, adenosine is primarily distributed between high-affinity adenosine receptors (e.g., A1R, A2AR, and A3R) and ENTs. In hypoxia, adenosine signaling is enhanced. Hypoxia increases the release of extracellular ATP/ADP via lytic and nonlytic pathways. In addition, HIFs upregulate (indicated by positive circles) adenosine metabolizing and signaling genes, including CD73 and adenosine receptors (e.g., A2AR and A2BR), while downregulating (indicated by negative circles) genes that dampen adenosine signaling, including ADA, ENTs, and AK. CD39 is upregulated in hypoxia by Sp1. In the gut, CD39 is largely restricted to immune cells and vascular endothelium. ATP/ADP metabolism on epithelial cells may involve ectonucleoside triphosphate diphosphohydrolase 7 (ENTPD7), a CD39 family member, and alkaline phosphatases. Together, these events increase extracellular adenosine and adenosine signaling, which dampens tissue inflammation and protects tissue barriers.

Close modal

In recent years, ample evidence has indicated that hypoxia/HIFs and extracellular adenosine/adenosine signaling play a prominent role in modulating immune cells during inflammation. Indeed, pharmacological and genetic studies strongly indicate that no other mechanism/pathway can compensate for the immune-modulating/immunosuppression actions of extracellular adenosine (49, 50, 115). As well, HIF-1α importantly regulates the metabolic switch of immune cells from aerobic energy to glycolysis and multiple facets of myeloid and T cell biology, including development, proliferation, survival, and cytokine production (116). As discussed, hypoxia/HIFs increase extracellular adenosine levels/adenosine signaling, whereby activation of A2AR and/or A2BR on many immune cells is a potent “off” signal to the cells. In addition to promoting inflammation, hypoxia can promote immunosuppression (116). Many studies support a potential link between hypoxia and adenosine in immune cells during inflammation. Hypoxia/HIFs impair TCR-mediated activation and reduce proliferation, IFN-γ production, and cytotoxicity. Similarly, A2AR and A2BR activity inhibit T cell TCR-mediated activation, proliferation, and cytokine (e.g., IFN-γ) production. Both are considered to act in concert to mediate these effects (117, 118). Notably, studies also indicated adenosine receptor–independent mechanisms (118). These mechanisms are yet to be clearly defined. HIF-1α additionally plays a role in influencing Treg differentiation and proliferation and also may coordinate with extracellular adenosine/adenosine signaling to mediate this response (77, 119121). Metabolic control of type 1 regulatory cells is balanced through coordination of hypoxia/HIF-1α target genes and ATP/adenosine metabolism (104). Moreover, HIF-1α–induced netrin-1 interacts with A2BR on PMNs, attenuating their transepithelial migration and limiting tissue damage. Recently, HIF-1α was shown to upregulate A2BR on alternatively activated macrophages in chronic inflammatory models (122). Suffice to say, there is great excitement for the possible benefit of therapeutic agents targeting hypoxia/adenosine signaling in regulating immune responses in a number of health conditions and disease.

Above we summarized adenosine signaling in protecting the intestinal epithelial barrier and its potent anti-inflammatory responses. In addition, we discussed hypoxia signaling and the link between adenosine signaling. Below, we discuss the hypoxia–adenosine link in IBD, intestinal I/R injury, and colon cancer (Fig. 2).

FIGURE 2.

Summary of the hypoxia–adenosine link during intestinal inflammation and disease. Inflamed tissues often become severely hypoxic, whereas tissue hypoxia can lead to tissue inflammation. HIFs are stabilized in these conditions, binding HREs in target genes. Adenosine signaling pathway genes are direct gene targets of hypoxia/HIFs. In general, HIF-1α–mediated increase of adenosine signaling is tissue protective (e.g., IBD and intestinal I/R injury), whereas in cancer, HIFs may target extracellular adenosine/adenosine signaling genes to promote tumorigenesis. Lower right box, Inflammation alters tissue metabolism, reducing the supply of nutrients and oxygen to tissues. In turn, inflamed tissues become profoundly hypoxic. Middle right box, Hypoxia signaling. Both PHDs and asparaginyl hydroxylase FIH (indicated as asparagine hydroxylase) serve an important role as oxygen sensors, controlling the activity of HIFs. In normoxia, HIFs are rapidly targeted for degradation by PHDs and VHL (not shown), an E3 ubiquitin ligase. In hypoxia, HIF-α is stabilized. Oxygen is an essential cofactor of PHDs and asparagine hydroxylase. HIFs (α and β subunits) translocate to the nucleus and dimerize, binding to HREs of target genes. Top right box, Adenosine signaling. Multiple adenosine pathway genes are targets of hypoxia/HIFs. The increased release of ATP/ADP to the cell surface and hypoxia/HIF-mediated regulation of extracellular adenosine pathway genes (see Fig. 1 for details) together enhance adenosine signaling.

FIGURE 2.

Summary of the hypoxia–adenosine link during intestinal inflammation and disease. Inflamed tissues often become severely hypoxic, whereas tissue hypoxia can lead to tissue inflammation. HIFs are stabilized in these conditions, binding HREs in target genes. Adenosine signaling pathway genes are direct gene targets of hypoxia/HIFs. In general, HIF-1α–mediated increase of adenosine signaling is tissue protective (e.g., IBD and intestinal I/R injury), whereas in cancer, HIFs may target extracellular adenosine/adenosine signaling genes to promote tumorigenesis. Lower right box, Inflammation alters tissue metabolism, reducing the supply of nutrients and oxygen to tissues. In turn, inflamed tissues become profoundly hypoxic. Middle right box, Hypoxia signaling. Both PHDs and asparaginyl hydroxylase FIH (indicated as asparagine hydroxylase) serve an important role as oxygen sensors, controlling the activity of HIFs. In normoxia, HIFs are rapidly targeted for degradation by PHDs and VHL (not shown), an E3 ubiquitin ligase. In hypoxia, HIF-α is stabilized. Oxygen is an essential cofactor of PHDs and asparagine hydroxylase. HIFs (α and β subunits) translocate to the nucleus and dimerize, binding to HREs of target genes. Top right box, Adenosine signaling. Multiple adenosine pathway genes are targets of hypoxia/HIFs. The increased release of ATP/ADP to the cell surface and hypoxia/HIF-mediated regulation of extracellular adenosine pathway genes (see Fig. 1 for details) together enhance adenosine signaling.

Close modal

Inflammatory bowel disease.

IBD is characterized by excessive inflammation and profound hypoxia. Several genetic and pharmacological studies support that hypoxia signaling is protective during IBD (6). For example, mice with deletion of HIF-1α in intestinal epithelial cells are more susceptible to intestinal inflammation and have more severe disease during experimental colitis. Mice experience significant weight loss, colonic shortening, and suffer extensive increases in barrier permeability (105). In as much, mice with intestinal epithelial cell-specific deletion of VHL (105) or deletion of PHD1 (123) are protected during experimental colitis. These mice benefit from much improved intestinal barrier function and reduced inflammation (105, 123). Notably, increased HIF stabilization associates with increased expression of HIF-1α barrier-protective genes, including CD73, in VHL-deficient mice (105). Several studies show mucosal HIF-1α stabilization as having therapeutic promise for IBD. Stabilization of HIFs in immune cells is also protective. Loss- and gain-of-function studies show HIF-1α induces Treg differentiation, whereby Tregs deficient for HIF-1α fail to limit inflammation in models of T cell–mediated colitis (121). HIF-1α deficiency in dendritic cells also results in the failure to dampen intestinal inflammation, resulting in the increase of proinflammatory cytokines and diminished numbers of Tregs (124). HIF-2α appears to have a different role from HIF-1α in IBD; HIF-2α promotes the severity of colitis in mice (125). HIF-2α promotes proinflammatory responses (125) and barrier dysfunction (126).

Significant tissue hypoxia during IBD has been shown by 2-nitoimidazole compounds (6, 105, 106). As mentioned previously, CD73, A2AR (114), and A2BR (113) are targets of HIFs; CD39 is a gene target of hypoxia-induced Sp1. Both cd39−/− (29) and cd73−/− (30) mice experience severe disease during experimental colitis, including significant weight loss, colonic shortening, enhanced immune cell infiltration, and increased barrier permeability. Wild-type mice treated with APCP experience the same devastation (30), whereas wild-type mice receiving apyrase, a soluble factor with enzyme activity identical to CD39, experience significant protection (29). Notably, CD39 polymorphisms are associated with IBD in humans (29), which provides additional support of the importance of this pathway in IBD. Several studies support that adenosine signaling by A2BR and A2AR provides protection during IBD. Indeed, mice with global or tissue-specific deletion of A2BR experience increased severity of colitis (32). Similarly, wild-type mice treated with A2BR antagonist PSB1115 experience increased weight loss, colonic shortening, and leukocyte infiltration. A2A receptor agonist ATL146e decreases both leukocyte infiltration and the production of inflammatory cytokines by T effector cells in IBD models (127). As mentioned, netrin-1 is directly induced by HIF-1α and interacts with A2BR, dampening neutrophil trafficking (11, 31). Accordingly, netrin-1–deficient mice also suffer significant disease severity during experimental colitis. Taken together, these studies support that HIF-mediated extracellular adenosine/adenosine signaling is protective in IBD. Of note, other studies suggest that A2BR deletion increases the severity of colitis (128130). Reasons for these differences are unclear, possibly related to differences in experimental models and design.

A2AR is essential to regulating adaptive immunity in IBD (34). A2AR agonists in the absence of Tregs prevent colitis by pathogenic T cells, whereby A2AR-deficient mice suffer severe disease even with transfer of wild-type Tregs (80). These studies show that A2AR expression on both CD45RBhigh and CD45RBlow cells are important to controlling T cell–mediated colitis by suppressing proinflammatory cytokine expression while sparing anti-inflammatory activity mediated by IL-10 and TGF-β (80). Adoptive transfer studies show that A2AR activity on lymphoid and nonlymphoid cells is additionally important for suppressing immune responses in colitis (131). Taken together, the ability of HIF-1α to increase extracellular adenosine/adenosine signaling in both immune and mucosal cells is essential in protecting tissues during IBD.

Intestinal I/R injury.

Intestinal ischemia is a life-threatening condition associated with thrombosis, hypotension, necrotizing enterocolitis, bowel transplantation, trauma, and chronic inflammation. Extracellular adenosine/adenosine signaling has long been linked to ischemia protection in tissues (22, 132134). Mounting evidence suggests a protective role of adenosine signaling in intestinal I/R injury. For example, A2BR expression is increased in intestinal mucosal scrapings following I/R in mice (26), whereby A2BR-deficient mice suffer more profound intestinal I/R injury (26). Similarly, A2BR antagonism enhances intestinal inflammation and injury during I/R in wild-type mice (26), whereas A2BR agonist treatment protects from intestinal injury, inflammation, and barrier breakdown (26). Adenosine treatment also attenuates intestinal I/R injury (27, 28). In general, CD73- and A2BR-deficient mice experience more severe tissue injury with I/R (22, 26). Also, ischemia results in a robust increase in HIFs (15). Notably, studies of heart ischemia show HIF-1α–mediated cardioprotection is dependent on CD73 and A2BR signaling. In this study, wild-type mice receive significant cardioprotective benefit from HIF activator, dimethyloxalylglycine (DMOG), treatment, whereas DMOG treatment in CD73- and A2BR-deficient mice provides no protection against ischemia injury (15). As well, Sp1-mediated increase of CD39 provides significant barrier protection during tissue ischemia (14, 135). Although additional studies are needed, these studies provide consideration of a link between hypoxia and adenosine in intestinal I/R injury. Therapeutic agents targeting hypoxia or adenosine signaling are widely available. Future laboratory studies will hopefully examine the potential of these agents in intestinal I/R injury.

Colon cancer.

Colitis-associated cancer (CSC) is a primary example of the induction of cancer by chronic inflammation. Patients with ulcerative colitis carry an 18% lifetime risk for development of colon cancer (136). CSC and sporadic colon cancer have different development pathways; however, they share similar inflammatory pathways. Inflammation in sporadic colon cancer can develop by oncogenes inducing inflammatory transcriptomes (137, 138), as well as through microbiota-mediated mechanisms (139). In general, all solid tumors eventually outpace the supply of oxygen, which in turn promotes inflammation. Similar to IBD (125), HIF-1α and HIF-2α may have different roles. For example, HIF-1α stabilization is associated with poor prognosis, whereas HIF-2α shows no prognostic value and is inversely associated with high tumor grade and HIF-1α (colon tumors, n = 731) (140). In addition, xenograft studies show HIF-1α deficiency inhibits colon tumor growth, whereas HIF-2α deficiency stimulates tumor growth (141). Moreover, inhibiting HIF-1α dimerization with acriflavine halts the progression of CSC in immunocompetent mice (142). Interestingly, HIF-1α overexpression does not increase tumorigenesis in sporadic colon and CSC cancer models and does not result in spontaneous tumor formation in mice (143). In contrast, intestinal epithelial disruption of Vhl has been shown to increase tumor progression, which is HIF-2α dependent (144). Suffice to say, there is much excitement surrounding the possible clinical benefit of targeting HIFs. However, at the same time, much remains to be understood.

Extracellular adenosine/adenosine signaling is also associated with many hallmarks of cancer, particularly immunosuppression. Both tumor-promoting inflammation and antitumor immunity coexist in tumors. The immunosuppressive actions of adenosine in cancer have been demonstrated in CD39-, CD73-, and A2AR-deficient mice and by pharmacological and genetic studies in immune-competent and immunodeficient mice (145149). Recently, studies show coinhibition of CD73 and A2AR is superior in improving antitumor immune responses (150). A2BR also is immunosuppressive. Tumors grow considerably slower in A2BR-deficient mice and wild-type mice treated with A2BR antagonists (ATL-801, PSB1115) (151153). In this study, immune cell immunity is necessary for the antitumor effect, because A2BR antagonist treatment is not effective in nude mice (153) and T cell–deficient animals (152). Reduced tumor growth by ATL-801 or PSB1115 increases T cell and reduces Treg and myeloid-derived suppressor cell infiltration. A2BR is found upregulated in colon tumors and cell lines and appears essential for colon cancer growth (154). A3R is upregulated in colon cancer; however, it is largely shown to inhibit cancer growth (155, 156). Interestingly, treatment of colon cancer cells with caffeine (pan-adenosine receptor antagonist) inhibits A3R-stimulated HIF-1α stabilization (157). Studies in melanoma also show adenosine increases HIF-1α stabilization in a dose-dependent and time-dependent manner exclusively by A3R (158). IB-MECA (A3R agonist) also inhibits the growth of melanoma tumors in syngeneic models (159) and lung metastases models (160, 161). It is not clear whether A3R-mediated increase in HIF-1α promotes tumor progression or supports the tumor-suppressive actions of A3R.

Recent studies show whole-body exposure to hyperoxic atmosphere (60% oxygen) reduces tumor growth (162, 163). Notably, adenosine, CD39, CD73, A2AR, and A2BR are reduced in these tumors and enhanced antitumor immune activity is seen. Accordingly, hyperoxia may have therapeutic benefit in cancer. These studies also strongly support the presence of the hypoxia–adenosine link in tumors. Indeed, another recent study has demonstrated that HIFs directly induce ectonucleoside triphosphate diphosphohydrolase 2, a family member of CD39, to prevent myeloid-derived suppressor cell differentiation in hepatocellular cancer (164). Taken together, there is a real opportunity to target hypoxia and adenosine signaling in CSC/colon cancer. However, more studies are necessary for understanding these pathways in colon tumors.

Targeting HIFs have proven to have therapeutic benefit for patients with kidney disease (165). Many more studies are ongoing for a number of conditions and diseases (7). DMOG, FG-4497, and TRC160334, all pan-PHD inhibitors, are profoundly protective in models of colitis (166168). A concern is that in contrast with HIF-1α (143), chronic activation of HIF-2α results in robust spontaneous intestinal inflammation (125), barrier dysfunction (126, 169), and tumorigenesis (144). Therefore, optimal therapies activating HIFs in IBD may be agents that specifically increase HIF-1α. PHD inhibitor AKB-4924 may be promising. AKB-4924 robustly activates HIF-1α with only modest HIF-2α activation (170). AKB-4924 is currently being developed for use in IBD (NCT02914262). Similarly, lower dosages of DMOG are capable of inducing HIF-1α with minimal effects on HIF-2α. Interestingly, HIF-2α–induced inflammation can be reduced with nonsteroidal anti-inflammatory drug, nimesulide (125). Thus, combining PHD inhibitors with nonsteroidal anti-inflammatory drugs may have therapeutic potential for patients with IBD. Additional concerns of PHD inhibitors are that they are nonspecific for PHD isoforms [PHD1, PHD2, and PHD3 (84, 171)] and that many tissues express PHDs. Oral administration of PHD inhibitors, including AKB-4924, may minimize side effects. In a head-to-head comparison, although oral delivery of AKB-4924 reduced colon epithelial HIF-1α stabilization compared with i.p. injection, oral AKB-4924 was sufficient enough to induce HIF gene targets and reduce disease severity in colitis models (172). Oral delivery reduced HIF stabilization and HIF target gene expression in extraintestinal tissues (172). Accordingly, with AKB-4924, there may be a trade-off between potency and toxicity. Roxadustat (FG-4592), another orally available PHD inhibitor, is currently in clinical trials for kidney disease (7). Studies also support the therapeutic benefit of targeting adenosine signaling in IBD; both A2AR (127) and A2BR (32) agonists provide significant benefit in colitis models. Given that many tissues express adenosine receptors, strategies for local delivery of A2AR and A2BR agonists may be worthwhile to assess. Studies also suggest that autologous Treg-based therapies, involving the enrichment of patient’s endogenous CD39+ Tregs and reconditioning the cells with cytokines, may lead to better control of inflammation in patients with IBD (173). The role of A3R in IBD is controversial (174, 175); however, A3R agonists may have clinical benefit (176). Patients with intestinal I/R injury may also benefit from therapeutic strategies that increase HIF stabilization and adenosine signaling (26) (Fig. 3).

FIGURE 3.

Targeting hypoxia and adenosine signaling in intestinal inflammation and disease. Increasing HIF-1α by PHD inhibitors or increasing adenosine signaling by adenosine receptor agonists (e.g., A2AR, A2BR, and possibly A3R) may provide therapeutic benefit for patients with IBD and intestinal I/R injury. In contrast, inhibiting HIF-1α (e.g., HIF inhibitors, hyperoxia) or inhibiting extracellular adenosine (e.g., CD73 inhibitors)/adenosine signaling (e.g., A2AR, A2BR antagonists) may prove beneficial for patients with CSC or sporadic colon cancer. A2BR agonists and antagonists are currently used only in basic science laboratories. PHD inhibitors, Vadadustat (AKB-6548), Daprodustat (GSK1278863), and Roxadustat (FG-4592), are in clinical trials for anemia associated with chronic kidney disease (7). HIF-1α inhibitors and hyperoxia are in clinical trials of various cancers and respiratory conditions/diseases, respectively. A2AR agonist Regadenoson is in clinical trials for sickle cell anemia (NCT01788631). A2AR antagonists, PBF-509 (NCT02403193) and CPI-444 (NCT02655822), and CD73 inhibitor, MEDI9447 (NCT02503774), are in clinical trials in solid tumors as anticancer therapies to boost immune responses against tumor cells. Completed clinical trials for A2AR antagonists include Parkinson’s disease (e.g., NCT01691924, NCT02111330). A3R agonist CF-102 may reduce tumor burden and improve survival in hepatocellular cancer (NCT02128958).

FIGURE 3.

Targeting hypoxia and adenosine signaling in intestinal inflammation and disease. Increasing HIF-1α by PHD inhibitors or increasing adenosine signaling by adenosine receptor agonists (e.g., A2AR, A2BR, and possibly A3R) may provide therapeutic benefit for patients with IBD and intestinal I/R injury. In contrast, inhibiting HIF-1α (e.g., HIF inhibitors, hyperoxia) or inhibiting extracellular adenosine (e.g., CD73 inhibitors)/adenosine signaling (e.g., A2AR, A2BR antagonists) may prove beneficial for patients with CSC or sporadic colon cancer. A2BR agonists and antagonists are currently used only in basic science laboratories. PHD inhibitors, Vadadustat (AKB-6548), Daprodustat (GSK1278863), and Roxadustat (FG-4592), are in clinical trials for anemia associated with chronic kidney disease (7). HIF-1α inhibitors and hyperoxia are in clinical trials of various cancers and respiratory conditions/diseases, respectively. A2AR agonist Regadenoson is in clinical trials for sickle cell anemia (NCT01788631). A2AR antagonists, PBF-509 (NCT02403193) and CPI-444 (NCT02655822), and CD73 inhibitor, MEDI9447 (NCT02503774), are in clinical trials in solid tumors as anticancer therapies to boost immune responses against tumor cells. Completed clinical trials for A2AR antagonists include Parkinson’s disease (e.g., NCT01691924, NCT02111330). A3R agonist CF-102 may reduce tumor burden and improve survival in hepatocellular cancer (NCT02128958).

Close modal

In contrast, inactivation of hypoxia/adenosine pathways may decrease immunosuppression activity in tumors in addition to reducing metastasis and resistance to therapy (75). Hypoxia/adenosine signaling can potentially be targeted at different steps in CSC/colon cancer (75), such as improving tissue oxygenation either by HIF-1α inhibitors (177) or hyperoxic atmosphere (162, 163), reducing extracellular adenosine by inhibiting CD73 (146149), or modulating adenosine signaling using agonists and antagonists (145) (Fig. 3). Given the complexity of antitumor immunity, the combination of immune therapies may have the most promise for patients. Preclinical studies show antihypoxia/antiadenosine therapy in combination with immune checkpoint inhibitors, such as anti–CTLA-4 and anti–PD-1, provides great benefit (147, 178, 179). Combination therapies are currently in early phase clinical trials (7). Much hope awaits the completion of these studies.

The understanding of the link between hypoxia and adenosine and their potential as therapeutic targets has advanced considerably over the years. It is now appreciated that inflammatory lesions are profoundly hypoxic and that the enhancement of adenosine signaling by HIFs is an essential endogenous adaptive response. A significant challenge that remains is the movement of agents targeting these pathways into clinical practice. A focus on advancing cell or tissue-specific delivery of agents as well as defining challenges that have hampered the success of prior clinical studies of adenosine signaling agents will be important (180). In addition, we must continue to gain new insights into these pathways. These efforts will certainly provide additional support in moving these pathways closer to being treatments and may make all the difference.

We thank the Department of Academic Technology at The University of Texas Health Science Center at Houston for the artwork.

This work was supported by an International Anesthesia Research Society Mentored Research Award (to J.L.B.) and National Institutes of Health Grants P50-CA098258 and DK056338 (to J.L.B.) and R01-DK097075, R01-HL098294, POI-HL114457, R01-DK082509, R01-HL109233, R01-DK109574, R01-HL119837, and R01-HL133900 (to H.K.E.).

Abbreviations used in this article:

ADA

adenosine deaminase

AK

adenosine kinase

CSC

colitis-associated cancer

DMOG

dimethyloxalylglycine

ENT

equilibrative nucleoside transporter

FIH

factor-inhibiting HIF

HIF

hypoxia-inducible factor

HRE

HIF-responsive element

IBD

inflammatory bowel disease

I/R

ischemia/reperfusion

PD

programmed cell death protein 1

PHD

prolyl hydroxylase

PMN

polymorphonuclear leukocyte

Treg

regulatory T cell

VHL

von Hippel–Lindau.

1
Podolsky
,
D. K.
2002
.
Inflammatory bowel disease.
N. Engl. J. Med.
347
:
417
429
.
2
Xavier
,
R. J.
,
D. K.
Podolsky
.
2007
.
Unravelling the pathogenesis of inflammatory bowel disease.
Nature
448
:
427
434
.
3
Eltzschig
,
H. K.
,
P.
Carmeliet
.
2011
.
Hypoxia and inflammation.
N. Engl. J. Med.
364
:
656
665
.
4
Eltzschig
,
H. K.
,
D. L.
Bratton
,
S. P.
Colgan
.
2014
.
Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases.
Nat. Rev. Drug Discov.
13
:
852
869
.
5
Campbell
,
E. L.
,
W. J.
Bruyninckx
,
C. J.
Kelly
,
L. E.
Glover
,
E. N.
McNamee
,
B. E.
Bowers
,
A. J.
Bayless
,
M.
Scully
,
B. J.
Saeedi
,
L.
Golden-Mason
, et al
.
2014
.
Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation.
Immunity
40
:
66
77
.
6
Colgan
,
S. P.
,
H. K.
Eltzschig
.
2012
.
Adenosine and hypoxia-inducible factor signaling in intestinal injury and recovery.
Annu. Rev. Physiol.
74
:
153
175
.
7
Bowser
,
J. L.
,
J. W.
Lee
,
X.
Yuan
,
H. K.
Eltzschig
.
2017
.
The hypoxia-adenosine link during inflammation.
J. Appl. Physiol.
123
:
1303
1320
.
8
Eckle
,
T.
,
M.
Faigle
,
A.
Grenz
,
S.
Laucher
,
L. F.
Thompson
,
H. K.
Eltzschig
.
2008
.
A2B adenosine receptor dampens hypoxia-induced vascular leak.
Blood
111
:
2024
2035
.
9
Eltzschig
,
H. K.
,
P.
Abdulla
,
E.
Hoffman
,
K. E.
Hamilton
,
D.
Daniels
,
C.
Schönfeld
,
M.
Löffler
,
G.
Reyes
,
M.
Duszenko
,
J.
Karhausen
, et al
.
2005
.
HIF-1-dependent repression of equilibrative nucleoside transporter (ENT) in hypoxia.
J. Exp. Med.
202
:
1493
1505
.
10
Eltzschig
,
H. K.
,
J. C.
Ibla
,
G. T.
Furuta
,
M. O.
Leonard
,
K. A.
Jacobson
,
K.
Enjyoji
,
S. C.
Robson
,
S. P.
Colgan
.
2003
.
Coordinated adenine nucleotide phosphohydrolysis and nucleoside signaling in posthypoxic endothelium: role of ectonucleotidases and adenosine A2B receptors.
J. Exp. Med.
198
:
783
796
.
11
Rosenberger
,
P.
,
J. M.
Schwab
,
V.
Mirakaj
,
E.
Masekowsky
,
A.
Mager
,
J. C.
Morote-Garcia
,
K.
Unertl
,
H. K.
Eltzschig
.
2009
.
Hypoxia-inducible factor-dependent induction of netrin-1 dampens inflammation caused by hypoxia.
Nat. Immunol.
10
:
195
202
.
12
Synnestvedt
,
K.
,
G. T.
Furuta
,
K. M.
Comerford
,
N.
Louis
,
J.
Karhausen
,
H. K.
Eltzschig
,
K. R.
Hansen
,
L. F.
Thompson
,
S. P.
Colgan
.
2002
.
Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia.
J. Clin. Invest.
110
:
993
1002
.
13
Thompson
,
L. F.
,
H. K.
Eltzschig
,
J. C.
Ibla
,
C. J.
Van De Wiele
,
R.
Resta
,
J. C.
Morote-Garcia
,
S. P.
Colgan
.
2004
.
Crucial role for ecto-5′-nucleotidase (CD73) in vascular leakage during hypoxia.
J. Exp. Med.
200
:
1395
1405
.
14
Eltzschig
,
H. K.
,
D.
Köhler
,
T.
Eckle
,
T.
Kong
,
S. C.
Robson
,
S. P.
Colgan
.
2009
.
Central role of Sp1-regulated CD39 in hypoxia/ischemia protection.
Blood
113
:
224
232
.
15
Eckle
,
T.
,
D.
Köhler
,
R.
Lehmann
,
K.
El Kasmi
,
H. K.
Eltzschig
.
2008
.
Hypoxia-inducible factor-1 is central to cardioprotection: a new paradigm for ischemic preconditioning.
Circulation
118
:
166
175
.
16
Eckle
,
T.
,
L.
Füllbier
,
M.
Wehrmann
,
J.
Khoury
,
M.
Mittelbronn
,
J.
Ibla
,
P.
Rosenberger
,
H. K.
Eltzschig
.
2007
.
Identification of ectonucleotidases CD39 and CD73 in innate protection during acute lung injury.
J. Immunol.
178
:
8127
8137
.
17
Eckle
,
T.
,
A.
Grenz
,
S.
Laucher
,
H. K.
Eltzschig
.
2008
.
A2B adenosine receptor signaling attenuates acute lung injury by enhancing alveolar fluid clearance in mice.
J. Clin. Invest.
118
:
3301
3315
.
18
Eckle
,
T.
,
K.
Hughes
,
H.
Ehrentraut
,
K. S.
Brodsky
,
P.
Rosenberger
,
D. S.
Choi
,
K.
Ravid
,
T.
Weng
,
Y.
Xia
,
M. R.
Blackburn
,
H. K.
Eltzschig
.
2013
.
Crosstalk between the equilibrative nucleoside transporter ENT2 and alveolar Adora2b adenosine receptors dampens acute lung injury.
FASEB J.
27
:
3078
3089
.
19
Eckle
,
T.
,
E. M.
Kewley
,
K. S.
Brodsky
,
E.
Tak
,
S.
Bonney
,
M.
Gobel
,
D.
Anderson
,
L. E.
Glover
,
A. K.
Riegel
,
S. P.
Colgan
,
H. K.
Eltzschig
.
2014
.
Identification of hypoxia-inducible factor HIF-1A as transcriptional regulator of the A2B adenosine receptor during acute lung injury.
J. Immunol.
192
:
1249
1256
.
20
Eckle
,
T.
,
M.
Koeppen
,
H. K.
Eltzschig
.
2009
.
Role of extracellular adenosine in acute lung injury.
Physiology
24
:
298
306
.
21
Schingnitz
,
U.
,
K.
Hartmann
,
C. F.
Macmanus
,
T.
Eckle
,
S.
Zug
,
S. P.
Colgan
,
H. K.
Eltzschig
.
2010
.
Signaling through the A2B adenosine receptor dampens endotoxin-induced acute lung injury.
J. Immunol.
184
:
5271
5279
.
22
Eckle
,
T.
,
T.
Krahn
,
A.
Grenz
,
D.
Köhler
,
M.
Mittelbronn
,
C.
Ledent
,
M. A.
Jacobson
,
H.
Osswald
,
L. F.
Thompson
,
K.
Unertl
,
H. K.
Eltzschig
.
2007
.
Cardioprotection by ecto-5′-nucleotidase (CD73) and A2B adenosine receptors.
Circulation
115
:
1581
1590
.
23
Köhler
,
D.
,
T.
Eckle
,
M.
Faigle
,
A.
Grenz
,
M.
Mittelbronn
,
S.
Laucher
,
M. L.
Hart
,
S. C.
Robson
,
C. E.
Müller
,
H. K.
Eltzschig
.
2007
.
CD39/ectonucleoside triphosphate diphosphohydrolase 1 provides myocardial protection during cardiac ischemia/reperfusion injury.
Circulation
116
:
1784
1794
.
24
Yang
,
Z.
,
Y. J.
Day
,
M. C.
Toufektsian
,
S. I.
Ramos
,
M.
Marshall
,
X. Q.
Wang
,
B. A.
French
,
J.
Linden
.
2005
.
Infarct-sparing effect of A2A-adenosine receptor activation is due primarily to its action on lymphocytes.
Circulation
111
:
2190
2197
.
25
Rose
,
J. B.
,
Z.
Naydenova
,
A.
Bang
,
M.
Eguchi
,
G.
Sweeney
,
D. S.
Choi
,
J. R.
Hammond
,
I. R.
Coe
.
2010
.
Equilibrative nucleoside transporter 1 plays an essential role in cardioprotection.
Am. J. Physiol. Heart Circ. Physiol.
298
:
H771
H777
.
26
Hart
,
M. L.
,
B.
Jacobi
,
J.
Schittenhelm
,
M.
Henn
,
H. K.
Eltzschig
.
2009
.
Cutting edge: A2B adenosine receptor signaling provides potent protection during intestinal ischemia/reperfusion injury.
J. Immunol.
182
:
3965
3968
.
27
Taha
,
M. O.
,
R.
Miranda-Ferreira
,
R. S.
Simões
,
M. S.
Abrão
,
I. S.
Oliveira-Junior
,
H. P.
Monteiro
,
J. M.
Santos
,
P. H.
Rodrigues
,
J. V.
Rodrigues
,
A. E.
Alves
, et al
.
2010
.
Role of adenosine on intestinal ischemia-reperfusion injury in rabbits.
Transplant. Proc.
42
:
454
456
.
28
Haddad
,
M. A.
,
R.
Miranda-Ferreira
,
N. S.
Taha
,
V. C.
Maldonado
,
R. R.
Daroz
,
M. O.
Daud
,
J. L.
Neto
,
D. A.
Muniz
,
P. C.
Silva
,
H. P.
Monteiro
, et al
.
2012
.
Effect of adenosine on injury caused by ischemia and reperfusion in rats: functional and morphologic study.
Transplant. Proc.
44
:
2317
2320
.
29
Friedman
,
D. J.
,
B. M.
Künzli
,
Y. I.
A-Rahim
,
J.
Sevigny
,
P. O.
Berberat
,
K.
Enjyoji
,
E.
Csizmadia
,
H.
Friess
,
S. C.
Robson
.
2009
.
From the cover: CD39 deletion exacerbates experimental murine colitis and human polymorphisms increase susceptibility to inflammatory bowel disease.
Proc. Natl. Acad. Sci. USA
106
:
16788
16793
.
30
Louis
,
N. A.
,
A. M.
Robinson
,
C. F.
MacManus
,
J.
Karhausen
,
M.
Scully
,
S. P.
Colgan
.
2008
.
Control of IFN-alphaA by CD73: implications for mucosal inflammation.
J. Immunol.
180
:
4246
4255
.
31
Aherne
,
C. M.
,
C. B.
Collins
,
J. C.
Masterson
,
M.
Tizzano
,
T. A.
Boyle
,
J. A.
Westrich
,
J. A.
Parnes
,
G. T.
Furuta
,
J.
Rivera-Nieves
,
H. K.
Eltzschig
.
2012
.
Neuronal guidance molecule netrin-1 attenuates inflammatory cell trafficking during acute experimental colitis.
Gut
61
:
695
705
.
32
Aherne
,
C. M.
,
B.
Saeedi
,
C. B.
Collins
,
J. C.
Masterson
,
E. N.
McNamee
,
L.
Perrenoud
,
C. R.
Rapp
,
V. F.
Curtis
,
A.
Bayless
,
A.
Fletcher
, et al
.
2015
.
Epithelial-specific A2B adenosine receptor signaling protects the colonic epithelial barrier during acute colitis.
Mucosal Immunol.
8
:
1324
1338
.
33
Frick
,
J. S.
,
C. F.
MacManus
,
M.
Scully
,
L. E.
Glover
,
H. K.
Eltzschig
,
S. P.
Colgan
.
2009
.
Contribution of adenosine A2B receptors to inflammatory parameters of experimental colitis.
J. Immunol.
182
:
4957
4964
.
34
Cekic
,
C.
,
J.
Linden
.
2016
.
Purinergic regulation of the immune system.
Nat. Rev. Immunol.
16
:
177
192
.
35
Idzko
,
M.
,
D.
Ferrari
,
H. K.
Eltzschig
.
2014
.
Nucleotide signalling during inflammation.
Nature
509
:
310
317
.
36
Eltzschig
,
H. K.
,
M. V.
Sitkovsky
,
S. C.
Robson
.
2012
.
Purinergic signaling during inflammation.
N. Engl. J. Med.
367
:
2322
2333
.
37
Strohmeier
,
G. R.
,
S. M.
Reppert
,
W. I.
Lencer
,
J. L.
Madara
.
1995
.
The A2b adenosine receptor mediates cAMP responses to adenosine receptor agonists in human intestinal epithelia.
J. Biol. Chem.
270
:
2387
2394
.
38
Madara
,
J. L.
,
T. W.
Patapoff
,
B.
Gillece-Castro
,
S. P.
Colgan
,
C. A.
Parkos
,
C.
Delp
,
R. J.
Mrsny
.
1993
.
5′-Adenosine monophosphate is the neutrophil-derived paracrine factor that elicits chloride secretion from T84 intestinal epithelial cell monolayers.
J. Clin. Invest.
91
:
2320
2325
.
39
Strohmeier
,
G. R.
,
W. I.
Lencer
,
T. W.
Patapoff
,
L. F.
Thompson
,
S. L.
Carlson
,
S. J.
Moe
,
D. K.
Carnes
,
R. J.
Mrsny
,
J. L.
Madara
.
1997
.
Surface expression, polarization, and functional significance of CD73 in human intestinal epithelia.
J. Clin. Invest.
99
:
2588
2601
.
40
Lennon
,
P. F.
,
C. T.
Taylor
,
G. L.
Stahl
,
S. P.
Colgan
.
1998
.
Neutrophil-derived 5′-adenosine monophosphate promotes endothelial barrier function via CD73-mediated conversion to adenosine and endothelial A2B receptor activation.
J. Exp. Med.
188
:
1433
1443
.
41
Eltzschig
,
H. K.
,
L. F.
Thompson
,
J.
Karhausen
,
R. J.
Cotta
,
J. C.
Ibla
,
S. C.
Robson
,
S. P.
Colgan
.
2004
.
Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism.
Blood
104
:
3986
3992
.
42
Bowser
,
J. L.
,
M. R.
Blackburn
,
G. L.
Shipley
,
J. G.
Molina
,
K.
Dunner
Jr.
,
R. R.
Broaddus
.
2016
.
Loss of CD73-mediated actin polymerization promotes endometrial tumor progression.
J. Clin. Invest.
126
:
220
238
.
43
Lawrence
,
D. W.
,
K. M.
Comerford
,
S. P.
Colgan
.
2002
.
Role of VASP in reestablishment of epithelial tight junction assembly after Ca2+ switch.
Am. J. Physiol. Cell Physiol.
282
:
C1235
C1245
.
44
Comerford
,
K. M.
,
D. W.
Lawrence
,
K.
Synnestvedt
,
B. P.
Levi
,
S. P.
Colgan
.
2002
.
Role of vasodilator-stimulated phosphoprotein in PKA-induced changes in endothelial junctional permeability.
FASEB J.
16
:
583
585
.
45
Sellon
,
R. K.
,
S.
Tonkonogy
,
M.
Schultz
,
L. A.
Dieleman
,
W.
Grenther
,
E.
Balish
,
D. M.
Rennick
,
R. B.
Sartor
.
1998
.
Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice.
Infect. Immun.
66
:
5224
5231
.
46
Jijon
,
H. B.
,
J.
Walker
,
F.
Hoentjen
,
H.
Diaz
,
J.
Ewaschuk
,
C.
Jobin
,
K. L.
Madsen
.
2005
.
Adenosine is a negative regulator of NF-kappaB and MAPK signaling in human intestinal epithelial cells.
Cell. Immunol.
237
:
86
95
.
47
Bowser
,
J. L.
,
R. R.
Broaddus
.
2016
.
CD73s protection of epithelial integrity: thinking beyond the barrier.
Tissue Barriers
4
:
e1224963
.
48
Csóka
,
B.
,
Z. H.
Németh
,
P.
Rosenberger
,
H. K.
Eltzschig
,
Z.
Spolarics
,
P.
Pacher
,
Z.
Selmeczy
,
B.
Koscsó
,
L.
Himer
,
E. S.
Vizi
, et al
.
2010
.
A2B adenosine receptors protect against sepsis-induced mortality by dampening excessive inflammation.
J. Immunol.
185
:
542
550
.
49
Cronstein
,
B. N.
,
D.
Naime
,
E.
Ostad
.
1993
.
The antiinflammatory mechanism of methotrexate. Increased adenosine release at inflamed sites diminishes leukocyte accumulation in an in vivo model of inflammation.
J. Clin. Invest.
92
:
2675
2682
.
50
Ohta
,
A.
,
M.
Sitkovsky
.
2001
.
Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage.
Nature
414
:
916
920
.
51
Thiel
,
M.
,
A.
Chouker
.
1995
.
Acting via A2 receptors, adenosine inhibits the production of tumor necrosis factor-alpha of endotoxin-stimulated human polymorphonuclear leukocytes.
J. Lab. Clin. Med.
126
:
275
282
.
52
McColl
,
S. R.
,
M.
St-Onge
,
A. A.
Dussault
,
C.
Laflamme
,
L.
Bouchard
,
J.
Boulanger
,
M.
Pouliot
.
2006
.
Immunomodulatory impact of the A2A adenosine receptor on the profile of chemokines produced by neutrophils.
FASEB J.
20
:
187
189
.
53
Cadieux
,
J. S.
,
P.
Leclerc
,
M.
St-Onge
,
A. A.
Dussault
,
C.
Laflamme
,
S.
Picard
,
C.
Ledent
,
P.
Borgeat
,
M.
Pouliot
.
2005
.
Potentiation of neutrophil cyclooxygenase-2 by adenosine: an early anti-inflammatory signal.
J. Cell Sci.
118
:
1437
1447
.
54
Pouliot
,
M.
,
M. E.
Fiset
,
M.
Massé
,
P. H.
Naccache
,
P.
Borgeat
.
2002
.
Adenosine up-regulates cyclooxygenase-2 in human granulocytes: impact on the balance of eicosanoid generation.
J. Immunol.
169
:
5279
5286
.
55
Cronstein
,
B. N.
,
S. B.
Kramer
,
G.
Weissmann
,
R.
Hirschhorn
.
1983
.
Adenosine: a physiological modulator of superoxide anion generation by human neutrophils.
J. Exp. Med.
158
:
1160
1177
.
56
Cronstein
,
B. N.
,
L.
Daguma
,
D.
Nichols
,
A. J.
Hutchison
,
M.
Williams
.
1990
.
The adenosine/neutrophil paradox resolved: human neutrophils possess both A1 and A2 receptors that promote chemotaxis and inhibit O2 generation, respectively.
J. Clin. Invest.
85
:
1150
1157
.
57
Haskó
,
G.
,
C.
Szabó
,
Z. H.
Németh
,
V.
Kvetan
,
S. M.
Pastores
,
E. S.
Vizi
.
1996
.
Adenosine receptor agonists differentially regulate IL-10, TNF-alpha, and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice.
J. Immunol.
157
:
4634
4640
.
58
Haskó
,
G.
,
D. G.
Kuhel
,
J. F.
Chen
,
M. A.
Schwarzschild
,
E. A.
Deitch
,
J. G.
Mabley
,
A.
Marton
,
C.
Szabó
.
2000
.
Adenosine inhibits IL-12 and TNF-[alpha] production via adenosine A2a receptor-dependent and independent mechanisms.
FASEB J.
14
:
2065
2074
.
59
Kreckler
,
L. M.
,
T. C.
Wan
,
Z. D.
Ge
,
J. A.
Auchampach
.
2006
.
Adenosine inhibits tumor necrosis factor-alpha release from mouse peritoneal macrophages via A2A and A2B but not the A3 adenosine receptor.
J. Pharmacol. Exp. Ther.
317
:
172
180
.
60
Németh
,
Z. H.
,
B.
Csóka
,
J.
Wilmanski
,
D.
Xu
,
Q.
Lu
,
C.
Ledent
,
E. A.
Deitch
,
P.
Pacher
,
Z.
Spolarics
,
G.
Haskó
.
2006
.
Adenosine A2A receptor inactivation increases survival in polymicrobial sepsis.
J. Immunol.
176
:
5616
5626
.
61
Csóka
,
B.
,
Z. H.
Németh
,
L.
Virág
,
P.
Gergely
,
S. J.
Leibovich
,
P.
Pacher
,
C. X.
Sun
,
M. R.
Blackburn
,
E. S.
Vizi
,
E. A.
Deitch
,
G.
Haskó
.
2007
.
A2A adenosine receptors and C/EBPbeta are crucially required for IL-10 production by macrophages exposed to Escherichia coli.
Blood
110
:
2685
2695
.
62
Panther
,
E.
,
M.
Idzko
,
Y.
Herouy
,
H.
Rheinen
,
P. J.
Gebicke-Haerter
,
U.
Mrowietz
,
S.
Dichmann
,
J.
Norgauer
.
2001
.
Expression and function of adenosine receptors in human dendritic cells.
FASEB J.
15
:
1963
1970
.
63
Schnurr
,
M.
,
T.
Toy
,
A.
Shin
,
G.
Hartmann
,
S.
Rothenfusser
,
J.
Soellner
,
I. D.
Davis
,
J.
Cebon
,
E.
Maraskovsky
.
2004
.
Role of adenosine receptors in regulating chemotaxis and cytokine production of plasmacytoid dendritic cells.
Blood
103
:
1391
1397
.
64
Panther
,
E.
,
S.
Corinti
,
M.
Idzko
,
Y.
Herouy
,
M.
Napp
,
A.
la Sala
,
G.
Girolomoni
,
J.
Norgauer
.
2003
.
Adenosine affects expression of membrane molecules, cytokine and chemokine release, and the T-cell stimulatory capacity of human dendritic cells.
Blood
101
:
3985
3990
.
65
Németh
,
Z. H.
,
C. S.
Lutz
,
B.
Csóka
,
E. A.
Deitch
,
S. J.
Leibovich
,
W. C.
Gause
,
M.
Tone
,
P.
Pacher
,
E. S.
Vizi
,
G.
Haskó
.
2005
.
Adenosine augments IL-10 production by macrophages through an A2B receptor-mediated posttranscriptional mechanism.
J. Immunol.
175
:
8260
8270
.
66
Csóka
,
B.
,
Z.
Selmeczy
,
B.
Koscsó
,
Z. H.
Németh
,
P.
Pacher
,
P. J.
Murray
,
D.
Kepka-Lenhart
,
S. M.
Morris
Jr.
,
W. C.
Gause
,
S. J.
Leibovich
,
G.
Haskó
.
2012
.
Adenosine promotes alternative macrophage activation via A2A and A2B receptors.
FASEB J.
26
:
376
386
.
67
Koscsó
,
B.
,
B.
Csóka
,
E.
Kókai
,
Z. H.
Németh
,
P.
Pacher
,
L.
Virág
,
S. J.
Leibovich
,
G.
Haskó
.
2013
.
Adenosine augments IL-10-induced STAT3 signaling in M2c macrophages.
J. Leukoc. Biol.
94
:
1309
1315
.
68
Csóka
,
B.
,
B.
Koscsó
,
G.
Töro
,
E.
Kókai
,
L.
Virág
,
Z. H.
Németh
,
P.
Pacher
,
P.
Bai
,
G.
Haskó
.
2014
.
A2B adenosine receptors prevent insulin resistance by inhibiting adipose tissue inflammation via maintaining alternative macrophage activation.
Diabetes
63
:
850
866
.
69
Mirakaj
,
V.
,
C. A.
Thix
,
S.
Laucher
,
C.
Mielke
,
J. C.
Morote-Garcia
,
M. A.
Schmit
,
J.
Henes
,
K. E.
Unertl
,
D.
Köhler
,
P.
Rosenberger
.
2010
.
Netrin-1 dampens pulmonary inflammation during acute lung injury.
Am. J. Respir. Crit. Care Med.
181
:
815
824
.
70
Marks
,
D. J.
,
F. Z.
Rahman
,
G. W.
Sewell
,
A. W.
Segal
.
2010
.
Crohn’s disease: an immune deficiency state.
Clin. Rev. Allergy Immunol.
38
:
20
31
.
71
Huang
,
S.
,
S.
Apasov
,
M.
Koshiba
,
M.
Sitkovsky
.
1997
.
Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion.
Blood
90
:
1600
1610
.
72
Ohta
,
A.
,
A.
Ohta
,
M.
Madasu
,
R.
Kini
,
M.
Subramanian
,
N.
Goel
,
M.
Sitkovsky
.
2009
.
A2A adenosine receptor may allow expansion of T cells lacking effector functions in extracellular adenosine-rich microenvironments.
J. Immunol.
183
:
5487
5493
.
73
Lappas
,
C. M.
,
J. M.
Rieger
,
J.
Linden
.
2005
.
A2A adenosine receptor induction inhibits IFN-gamma production in murine CD4+ T cells.
J. Immunol.
174
:
1073
1080
.
74
Csóka
,
B.
,
L.
Himer
,
Z.
Selmeczy
,
E. S.
Vizi
,
P.
Pacher
,
C.
Ledent
,
E. A.
Deitch
,
Z.
Spolarics
,
Z. H.
Németh
,
G.
Haskó
.
2008
.
Adenosine A2A receptor activation inhibits T helper 1 and T helper 2 cell development and effector function.
FASEB J.
22
:
3491
3499
.
75
Ohta
,
A.
2016
.
A metabolic immune checkpoint: adenosine in tumor microenvironment.
Front. Immunol.
7
:
109
.
76
Bono
,
M. R.
,
D.
Fernández
,
F.
Flores-Santibáñez
,
M.
Rosemblatt
,
D.
Sauma
.
2015
.
CD73 and CD39 ectonucleotidases in T cell differentiation: beyond immunosuppression.
FEBS Lett.
589
:
3454
3460
.
77
Deaglio
,
S.
,
K. M.
Dwyer
,
W.
Gao
,
D.
Friedman
,
A.
Usheva
,
A.
Erat
,
J. F.
Chen
,
K.
Enjyoji
,
J.
Linden
,
M.
Oukka
, et al
.
2007
.
Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression.
J. Exp. Med.
204
:
1257
1265
.
78
Ohta
,
A.
,
R.
Kini
,
A.
Ohta
,
M.
Subramanian
,
M.
Madasu
,
M.
Sitkovsky
.
2012
.
The development and immunosuppressive functions of CD4(+) CD25(+) FoxP3(+) regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway.
Front. Immunol.
3
:
190
.
79
Ohta
,
A.
,
M.
Sitkovsky
.
2014
.
Extracellular adenosine-mediated modulation of regulatory T cells.
Front. Immunol.
5
:
304
.
80
Naganuma
,
M.
,
E. B.
Wiznerowicz
,
C. M.
Lappas
,
J.
Linden
,
M. T.
Worthington
,
P. B.
Ernst
.
2006
.
Cutting edge: critical role for A2A adenosine receptors in the T cell-mediated regulation of colitis.
J. Immunol.
177
:
2765
2769
.
81
Longhi
,
M. S.
,
A.
Moss
,
A.
Bai
,
Y.
Wu
,
H.
Huang
,
A.
Cheifetz
,
F. J.
Quintana
,
S. C.
Robson
.
2014
.
Characterization of human CD39+ Th17 cells with suppressor activity and modulation in inflammatory bowel disease.
PLoS One
9
:
e87956
.
82
Longhi
,
M. S.
,
A.
Moss
,
Z. G.
Jiang
,
S. C.
Robson
.
2017
.
Purinergic signaling during intestinal inflammation.
J. Mol. Med.
95
:
915
925
.
83
Manalo
,
D. J.
,
A.
Rowan
,
T.
Lavoie
,
L.
Natarajan
,
B. D.
Kelly
,
S. Q.
Ye
,
J. G.
Garcia
,
G. L.
Semenza
.
2005
.
Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1.
Blood
105
:
659
669
.
84
Epstein
,
A. C.
,
J. M.
Gleadle
,
L. A.
McNeill
,
K. S.
Hewitson
,
J.
O’Rourke
,
D. R.
Mole
,
M.
Mukherji
,
E.
Metzen
,
M. I.
Wilson
,
A.
Dhanda
, et al
.
2001
.
C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation.
Cell
107
:
43
54
.
85
Jaakkola
,
P.
,
D. R.
Mole
,
Y. M.
Tian
,
M. I.
Wilson
,
J.
Gielbert
,
S. J.
Gaskell
,
A.
von Kriegsheim
,
H. F.
Hebestreit
,
M.
Mukherji
,
C. J.
Schofield
, et al
.
2001
.
Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation.
Science
292
:
468
472
.
86
Kamura
,
T.
,
S.
Sato
,
K.
Iwai
,
M.
Czyzyk-Krzeska
,
R. C.
Conaway
,
J. W.
Conaway
.
2000
.
Activation of HIF1alpha ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex.
Proc. Natl. Acad. Sci. USA
97
:
10430
10435
.
87
Ohh
,
M.
,
C. W.
Park
,
M.
Ivan
,
M. A.
Hoffman
,
T. Y.
Kim
,
L. E.
Huang
,
N.
Pavletich
,
V.
Chau
,
W. G.
Kaelin
.
2000
.
Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein.
Nat. Cell Biol.
2
:
423
427
.
88
Tanimoto
,
K.
,
Y.
Makino
,
T.
Pereira
,
L.
Poellinger
.
2000
.
Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein.
EMBO J.
19
:
4298
4309
.
89
Maxwell
,
P. H.
,
M. S.
Wiesener
,
G. W.
Chang
,
S. C.
Clifford
,
E. C.
Vaux
,
M. E.
Cockman
,
C. C.
Wykoff
,
C. W.
Pugh
,
E. R.
Maher
,
P. J.
Ratcliffe
.
1999
.
The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis.
Nature
399
:
271
275
.
90
Aragonés
,
J.
,
M.
Schneider
,
K.
Van Geyte
,
P.
Fraisl
,
T.
Dresselaers
,
M.
Mazzone
,
R.
Dirkx
,
S.
Zacchigna
,
H.
Lemieux
,
N. H.
Jeoung
, et al
.
2008
.
Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism.
Nat. Genet.
40
:
170
180
.
91
Bishop
,
T.
,
D.
Gallagher
,
A.
Pascual
,
C. A.
Lygate
,
J. P.
de Bono
,
L. G.
Nicholls
,
P.
Ortega-Saenz
,
H.
Oster
,
B.
Wijeyekoon
,
A. I.
Sutherland
, et al
.
2008
.
Abnormal sympathoadrenal development and systemic hypotension in PHD3-/- mice.
Mol. Cell. Biol.
28
:
3386
3400
.
92
Takeda
,
K.
,
H. L.
Aguila
,
N. S.
Parikh
,
X.
Li
,
K.
Lamothe
,
L. J.
Duan
,
H.
Takeda
,
F. S.
Lee
,
G. H.
Fong
.
2008
.
Regulation of adult erythropoiesis by prolyl hydroxylase domain proteins.
Blood
111
:
3229
3235
.
93
Takeda
,
K.
,
V. C.
Ho
,
H.
Takeda
,
L. J.
Duan
,
A.
Nagy
,
G. H.
Fong
.
2006
.
Placental but not heart defects are associated with elevated hypoxia-inducible factor alpha levels in mice lacking prolyl hydroxylase domain protein 2.
Mol. Cell. Biol.
26
:
8336
8346
.
94
Gnarra
,
J. R.
,
J. M.
Ward
,
F. D.
Porter
,
J. R.
Wagner
,
D. E.
Devor
,
A.
Grinberg
,
M. R.
Emmert-Buck
,
H.
Westphal
,
R. D.
Klausner
,
W. M.
Linehan
.
1997
.
Defective placental vasculogenesis causes embryonic lethality in VHL-deficient mice.
Proc. Natl. Acad. Sci. USA
94
:
9102
9107
.
95
Mahon
,
P. C.
,
K.
Hirota
,
G. L.
Semenza
.
2001
.
FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity.
Genes Dev.
15
:
2675
2686
.
96
Lando
,
D.
,
D. J.
Peet
,
J. J.
Gorman
,
D. A.
Whelan
,
M. L.
Whitelaw
,
R. K.
Bruick
.
2002
.
FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor.
Genes Dev.
16
:
1466
1471
.
97
Hu
,
C. J.
,
L. Y.
Wang
,
L. A.
Chodosh
,
B.
Keith
,
M. C.
Simon
.
2003
.
Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation.
Mol. Cell. Biol.
23
:
9361
9374
.
98
Ratcliffe
,
P. J.
2007
.
HIF-1 and HIF-2: working alone or together in hypoxia?
J. Clin. Invest.
117
:
862
865
.
99
Peyssonnaux
,
C.
,
P.
Cejudo-Martin
,
A.
Doedens
,
A. S.
Zinkernagel
,
R. S.
Johnson
,
V.
Nizet
.
2007
.
Cutting edge: essential role of hypoxia inducible factor-1alpha in development of lipopolysaccharide-induced sepsis.
J. Immunol.
178
:
7516
7519
.
100
Hartmann
,
H.
,
H. K.
Eltzschig
,
H.
Wurz
,
K.
Hantke
,
A.
Rakin
,
A. S.
Yazdi
,
G.
Matteoli
,
E.
Bohn
,
I. B.
Autenrieth
,
J.
Karhausen
, et al
.
2008
.
Hypoxia-independent activation of HIF-1 by enterobacteriaceae and their siderophores.
Gastroenterology
134
:
756
767
.
101
Cummins
,
E. P.
,
E.
Berra
,
K. M.
Comerford
,
A.
Ginouves
,
K. T.
Fitzgerald
,
F.
Seeballuck
,
C.
Godson
,
J. E.
Nielsen
,
P.
Moynagh
,
J.
Pouyssegur
,
C. T.
Taylor
.
2006
.
Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity.
Proc. Natl. Acad. Sci. USA
103
:
18154
18159
.
102
D’Ignazio
,
L.
,
S.
Rocha
.
2016
.
Hypoxia induced NF-κB.
Cells
5
:
10
.
103
Albina
,
J. E.
,
B.
Mastrofrancesco
,
J. A.
Vessella
,
C. A.
Louis
,
W. L.
Henry
Jr.
,
J. S.
Reichner
.
2001
.
HIF-1 expression in healing wounds: HIF-1alpha induction in primary inflammatory cells by TNF-alpha.
Am. J. Physiol. Cell Physiol.
281
:
C1971
C1977
.
104
Mascanfroni
,
I. D.
,
M. C.
Takenaka
,
A.
Yeste
,
B.
Patel
,
Y.
Wu
,
J. E.
Kenison
,
S.
Siddiqui
,
A. S.
Basso
,
L. E.
Otterbein
,
D. M.
Pardoll
, et al
.
2015
.
Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-α.
Nat. Med.
21
:
638
646
.
105
Karhausen
,
J.
,
G. T.
Furuta
,
J. E.
Tomaszewski
,
R. S.
Johnson
,
S. P.
Colgan
,
V. H.
Haase
.
2004
.
Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis.
J. Clin. Invest.
114
:
1098
1106
.
106
Taylor
,
C. T.
,
S. P.
Colgan
.
2007
.
Hypoxia and gastrointestinal disease.
J. Mol. Med.
85
:
1295
1300
.
107
Giatromanolaki
,
A.
,
E.
Sivridis
,
E.
Maltezos
,
D.
Papazoglou
,
C.
Simopoulos
,
K. C.
Gatter
,
A. L.
Harris
,
M. I.
Koukourakis
.
2003
.
Hypoxia inducible factor 1alpha and 2alpha overexpression in inflammatory bowel disease.
J. Clin. Pathol.
56
:
209
213
.
108
Pagès
,
G.
,
J.
Pouysségur
.
2005
.
Transcriptional regulation of the vascular endothelial growth factor gene—a concert of activating factors.
Cardiovasc. Res.
65
:
564
573
.
109
Morote-Garcia
,
J. C.
,
P.
Rosenberger
,
N. M.
Nivillac
,
I. R.
Coe
,
H. K.
Eltzschig
.
2009
.
Hypoxia-inducible factor-dependent repression of equilibrative nucleoside transporter 2 attenuates mucosal inflammation during intestinal hypoxia.
Gastroenterology
136
:
607
618
.
110
Decking
,
U. K.
,
G.
Schlieper
,
K.
Kroll
,
J.
Schrader
.
1997
.
Hypoxia-induced inhibition of adenosine kinase potentiates cardiac adenosine release.
Circ. Res.
81
:
154
164
.
111
Morote-Garcia
,
J. C.
,
P.
Rosenberger
,
J.
Kuhlicke
,
H. K.
Eltzschig
.
2008
.
HIF-1-dependent repression of adenosine kinase attenuates hypoxia-induced vascular leak.
Blood
111
:
5571
5580
.
112
Löffler
,
M.
,
J. C.
Morote-Garcia
,
S. A.
Eltzschig
,
I. R.
Coe
,
H. K.
Eltzschig
.
2007
.
Physiological roles of vascular nucleoside transporters.
Arterioscler. Thromb. Vasc. Biol.
27
:
1004
1013
.
113
Kong
,
T.
,
K. A.
Westerman
,
M.
Faigle
,
H. K.
Eltzschig
,
S. P.
Colgan
.
2006
.
HIF-dependent induction of adenosine A2B receptor in hypoxia.
FASEB J.
20
:
2242
2250
.
114
Ahmad
,
A.
,
S.
Ahmad
,
L.
Glover
,
S. M.
Miller
,
J. M.
Shannon
,
X.
Guo
,
W. A.
Franklin
,
J. P.
Bridges
,
J. B.
Schaack
,
S. P.
Colgan
,
C. W.
White
.
2009
.
Adenosine A2A receptor is a unique angiogenic target of HIF-2alpha in pulmonary endothelial cells.
Proc. Natl. Acad. Sci. USA
106
:
10684
10689
.
115
Sitkovsky
,
M. V.
,
D.
Lukashev
,
S.
Apasov
,
H.
Kojima
,
M.
Koshiba
,
C.
Caldwell
,
A.
Ohta
,
M.
Thiel
.
2004
.
Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors.
Annu. Rev. Immunol.
22
:
657
682
.
116
Sitkovsky
,
M.
,
D.
Lukashev
.
2005
.
Regulation of immune cells by local-tissue oxygen tension: HIF1 alpha and adenosine receptors.
Nat. Rev. Immunol.
5
:
712
721
.
117
Thiel
,
M.
,
C. C.
Caldwell
,
S.
Kreth
,
S.
Kuboki
,
P.
Chen
,
P.
Smith
,
A.
Ohta
,
A. B.
Lentsch
,
D.
Lukashev
,
M. V.
Sitkovsky
.
2007
.
Targeted deletion of HIF-1alpha gene in T cells prevents their inhibition in hypoxic inflamed tissues and improves septic mice survival.
PLoS One
2
:
e853
.
118
Ohta
,
A.
,
M.
Madasu
,
M.
Subramanian
,
R.
Kini
,
G.
Jones
,
A.
Choukèr
,
A.
Ohta
,
M.
Sitkovsky
.
2014
.
Hypoxia-induced and A2A adenosine receptor-independent T-cell suppression is short lived and easily reversible.
Int. Immunol.
26
:
83
91
.
119
Zarek
,
P. E.
,
C. T.
Huang
,
E. R.
Lutz
,
J.
Kowalski
,
M. R.
Horton
,
J.
Linden
,
C. G.
Drake
,
J. D.
Powell
.
2008
.
A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells.
Blood
111
:
251
259
.
120
Ben-Shoshan
,
J.
,
S.
Maysel-Auslender
,
A.
Mor
,
G.
Keren
,
J.
George
.
2008
.
Hypoxia controls CD4+CD25+ regulatory T-cell homeostasis via hypoxia-inducible factor-1alpha.
Eur. J. Immunol.
38
:
2412
2418
.
121
Clambey
,
E. T.
,
E. N.
McNamee
,
J. A.
Westrich
,
L. E.
Glover
,
E. L.
Campbell
,
P.
Jedlicka
,
E. F.
de Zoeten
,
J. C.
Cambier
,
K. R.
Stenmark
,
S. P.
Colgan
,
H. K.
Eltzschig
.
2012
.
Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa.
Proc. Natl. Acad. Sci. USA
109
:
E2784
E2793
.
122
Philip
,
K.
,
T. W.
Mills
,
J.
Davies
,
N. Y.
Chen
,
H.
Karmouty-Quintana
,
F.
Luo
,
J. G.
Molina
,
J.
Amione-Guerra
,
N.
Sinha
,
A.
Guha
, et al
.
2017
.
HIF1A up-regulates the ADORA2B receptor on alternatively activated macrophages and contributes to pulmonary fibrosis.
FASEB J.
31
:
4745
4758
.
123
Tambuwala
,
M. M.
,
E. P.
Cummins
,
C. R.
Lenihan
,
J.
Kiss
,
M.
Stauch
,
C. C.
Scholz
,
P.
Fraisl
,
F.
Lasitschka
,
M.
Mollenhauer
,
S. P.
Saunders
, et al
.
2010
.
Loss of prolyl hydroxylase-1 protects against colitis through reduced epithelial cell apoptosis and increased barrier function.
Gastroenterology
139
:
2093
2101
.
124
Flück
,
K.
,
G.
Breves
,
J.
Fandrey
,
S.
Winning
.
2016
.
Hypoxia-inducible factor 1 in dendritic cells is crucial for the activation of protective regulatory T cells in murine colitis.
Mucosal Immunol.
9
:
379
390
.
125
Xue
,
X.
,
S.
Ramakrishnan
,
E.
Anderson
,
M.
Taylor
,
E. M.
Zimmermann
,
J. R.
Spence
,
S.
Huang
,
J. K.
Greenson
,
Y. M.
Shah
.
2013
.
Endothelial PAS domain protein 1 activates the inflammatory response in the intestinal epithelium to promote colitis in mice.
Gastroenterology
145
:
831
841
.
126
Xie
,
L.
,
X.
Xue
,
M.
Taylor
,
S. K.
Ramakrishnan
,
K.
Nagaoka
,
C.
Hao
,
F. J.
Gonzalez
,
Y. M.
Shah
.
2014
.
Hypoxia-inducible factor/MAZ-dependent induction of caveolin-1 regulates colon permeability through suppression of occludin, leading to hypoxia-induced inflammation.
Mol. Cell. Biol.
34
:
3013
3023
.
127
Odashima
,
M.
,
G.
Bamias
,
J.
Rivera-Nieves
,
J.
Linden
,
C. C.
Nast
,
C. A.
Moskaluk
,
M.
Marini
,
K.
Sugawara
,
K.
Kozaiwa
,
M.
Otaka
, et al
.
2005
.
Activation of A2A adenosine receptor attenuates intestinal inflammation in animal models of inflammatory bowel disease.
Gastroenterology
129
:
26
33
.
128
Kolachala
,
V. L.
,
M.
Vijay-Kumar
,
G.
Dalmasso
,
D.
Yang
,
J.
Linden
,
L.
Wang
,
A.
Gewirtz
,
K.
Ravid
,
D.
Merlin
,
S. V.
Sitaraman
.
2008
.
A2B adenosine receptor gene deletion attenuates murine colitis.
Gastroenterology
135
:
861
870
.
129
Kolachala
,
V.
,
B.
Ruble
,
M.
Vijay-Kumar
,
L.
Wang
,
S.
Mwangi
,
H.
Figler
,
R.
Figler
,
S.
Srinivasan
,
A.
Gewirtz
,
J.
Linden
, et al
.
2008
.
Blockade of adenosine A2B receptors ameliorates murine colitis.
Br. J. Pharmacol.
155
:
127
137
.
130
Ingersoll
,
S. A.
,
H.
Laroui
,
V. L.
Kolachala
,
L.
Wang
,
P.
Garg
,
T. L.
Denning
,
A. T.
Gewirtz
,
D.
Merlin
,
S. V.
Sitaraman
.
2012
.
A(2B)AR expression in non-immune cells plays an important role in the development of murine colitis.
Dig. Liver Dis.
44
:
819
826
.
131
Kurtz
,
C. C.
,
I.
Drygiannakis
,
M.
Naganuma
,
S.
Feldman
,
V.
Bekiaris
,
J.
Linden
,
C. F.
Ware
,
P. B.
Ernst
.
2014
.
Extracellular adenosine regulates colitis through effects on lymphoid and nonlymphoid cells.
Am. J. Physiol. Gastrointest. Liver Physiol.
307
:
G338
G346
.
132
Chen
,
J. F.
,
F.
Pedata
.
2008
.
Modulation of ischemic brain injury and neuroinflammation by adenosine A2A receptors.
Curr. Pharm. Des.
14
:
1490
1499
.
133
Kitakaze
,
M.
,
M.
Hori
,
T.
Morioka
,
T.
Minamino
,
S.
Takashima
,
H.
Sato
,
Y.
Shinozaki
,
M.
Chujo
,
H.
Mori
,
M.
Inoue
, et al
.
1994
.
Infarct size-limiting effect of ischemic preconditioning is blunted by inhibition of 5′-nucleotidase activity and attenuation of adenosine release.
Circulation
89
:
1237
1246
.
134
Yap
,
S. C.
,
H. T.
Lee
.
2012
.
Adenosine and protection from acute kidney injury.
Curr. Opin. Nephrol. Hypertens.
21
:
24
32
.
135
Hart
,
M. L.
,
I. C.
Gorzolla
,
J.
Schittenhelm
,
S. C.
Robson
,
H. K.
Eltzschig
.
2010
.
SP1-dependent induction of CD39 facilitates hepatic ischemic preconditioning.
J. Immunol.
184
:
4017
4024
.
136
Eaden
,
J. A.
,
K. R.
Abrams
,
J. F.
Mayberry
.
2001
.
The risk of colorectal cancer in ulcerative colitis: a meta-analysis.
Gut
48
:
526
535
.
137
Sparmann
,
A.
,
D.
Bar-Sagi
.
2004
.
Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis.
Cancer Cell
6
:
447
458
.
138
Schwitalla
,
S.
,
A. A.
Fingerle
,
P.
Cammareri
,
T.
Nebelsiek
,
S. I.
Göktuna
,
P. K.
Ziegler
,
O.
Canli
,
J.
Heijmans
,
D. J.
Huels
,
G.
Moreaux
, et al
.
2013
.
Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties.
Cell
152
:
25
38
.
139
Grivennikov
,
S. I.
,
K.
Wang
,
D.
Mucida
,
C. A.
Stewart
,
B.
Schnabl
,
D.
Jauch
,
K.
Taniguchi
,
G. Y.
Yu
,
C. H.
Osterreicher
,
K. E.
Hung
, et al
.
2012
.
Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth.
Nature
491
:
254
258
.
140
Baba
,
Y.
,
K.
Nosho
,
K.
Shima
,
N.
Irahara
,
A. T.
Chan
,
J. A.
Meyerhardt
,
D. C.
Chung
,
E. L.
Giovannucci
,
C. S.
Fuchs
,
S.
Ogino
.
2010
.
HIF1A overexpression is associated with poor prognosis in a cohort of 731 colorectal cancers.
Am. J. Pathol.
176
:
2292
2301
.
141
Imamura
,
T.
,
H.
Kikuchi
,
M. T.
Herraiz
,
D. Y.
Park
,
Y.
Mizukami
,
M.
Mino-Kenduson
,
M. P.
Lynch
,
B. R.
Rueda
,
Y.
Benita
,
R. J.
Xavier
,
D. C.
Chung
.
2009
.
HIF-1alpha and HIF-2alpha have divergent roles in colon cancer.
Int. J. Cancer
124
:
763
771
.
142
Shay
,
J. E.
,
H. Z.
Imtiyaz
,
S.
Sivanand
,
A. C.
Durham
,
N.
Skuli
,
S.
Hsu
,
V.
Mucaj
,
T. S.
Eisinger-Mathason
,
B. L.
Krock
,
D. N.
Giannoukos
,
M. C.
Simon
.
2014
.
Inhibition of hypoxia-inducible factors limits tumor progression in a mouse model of colorectal cancer.
Carcinogenesis
35
:
1067
1077
.
143
Xue
,
X.
,
S. K.
Ramakrishnan
,
Y. M.
Shah
.
2014
.
Activation of HIF-1α does not increase intestinal tumorigenesis.
Am. J. Physiol. Gastrointest. Liver Physiol.
307
:
G187
G195
.
144
Xue
,
X.
,
M.
Taylor
,
E.
Anderson
,
C.
Hao
,
A.
Qu
,
J. K.
Greenson
,
E. M.
Zimmermann
,
F. J.
Gonzalez
,
Y. M.
Shah
.
2012
.
Hypoxia-inducible factor-2α activation promotes colorectal cancer progression by dysregulating iron homeostasis.
Cancer Res.
72
:
2285
2293
.
145
Ohta
,
A.
,
E.
Gorelik
,
S. J.
Prasad
,
F.
Ronchese
,
D.
Lukashev
,
M. K.
Wong
,
X.
Huang
,
S.
Caldwell
,
K.
Liu
,
P.
Smith
, et al
.
2006
.
A2A adenosine receptor protects tumors from antitumor T cells.
Proc. Natl. Acad. Sci. USA
103
:
13132
13137
.
146
Allard
,
B.
,
M. S.
Longhi
,
S. C.
Robson
,
J.
Stagg
.
2017
.
The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets.
Immunol. Rev.
276
:
121
144
.
147
Allard
,
B.
,
S.
Pommey
,
M. J.
Smyth
,
J.
Stagg
.
2013
.
Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs.
Clin. Cancer Res.
19
:
5626
5635
.
148
Allard
,
D.
,
B.
Allard
,
P. O.
Gaudreau
,
P.
Chrobak
,
J.
Stagg
.
2016
.
CD73-adenosine: a next-generation target in immuno-oncology.
Immunotherapy
8
:
145
163
.
149
Antonioli
,
L.
,
G. G.
Yegutkin
,
P.
Pacher
,
C.
Blandizzi
,
G.
Haskó
.
2016
.
Anti-CD73 in cancer immunotherapy: awakening new opportunities.
Trends Cancer
2
:
95
109
.
150
Young
,
A.
,
S. F.
Ngiow
,
D. S.
Barkauskas
,
E.
Sult
,
C.
Hay
,
S. J.
Blake
,
Q.
Huang
,
J.
Liu
,
K.
Takeda
,
M. W. L.
Teng
, et al
.
2016
.
Co-inhibition of CD73 and A2AR adenosine signaling improves anti-tumor immune responses.
Cancer Cell
30
:
391
403
.
151
Ryzhov
,
S.
,
S. V.
Novitskiy
,
R.
Zaynagetdinov
,
A. E.
Goldstein
,
D. P.
Carbone
,
I.
Biaggioni
,
M. M.
Dikov
,
I.
Feoktistov
.
2008
.
Host A(2B) adenosine receptors promote carcinoma growth.
Neoplasia
10
:
987
995
.
152
Cekic
,
C.
,
D.
Sag
,
Y.
Li
,
D.
Theodorescu
,
R. M.
Strieter
,
J.
Linden
.
2012
.
Adenosine A2B receptor blockade slows growth of bladder and breast tumors.
J. Immunol.
188
:
198
205
.
153
Iannone
,
R.
,
L.
Miele
,
P.
Maiolino
,
A.
Pinto
,
S.
Morello
.
2013
.
Blockade of A2b adenosine receptor reduces tumor growth and immune suppression mediated by myeloid-derived suppressor cells in a mouse model of melanoma.
Neoplasia
15
:
1400
1409
.
154
Ma
,
D. F.
,
T.
Kondo
,
T.
Nakazawa
,
D. F.
Niu
,
K.
Mochizuki
,
T.
Kawasaki
,
T.
Yamane
,
R.
Katoh
.
2010
.
Hypoxia-inducible adenosine A2B receptor modulates proliferation of colon carcinoma cells.
Hum. Pathol.
41
:
1550
1557
.
155
Gessi
,
S.
,
E.
Cattabriga
,
A.
Avitabile
,
R.
Gafa’
,
G.
Lanza
,
L.
Cavazzini
,
N.
Bianchi
,
R.
Gambari
,
C.
Feo
,
A.
Liboni
, et al
.
2004
.
Elevated expression of A3 adenosine receptors in human colorectal cancer is reflected in peripheral blood cells.
Clin. Cancer Res.
10
:
5895
5901
.
156
Gessi
,
S.
,
S.
Merighi
,
V.
Sacchetto
,
C.
Simioni
,
P. A.
Borea
.
2011
.
Adenosine receptors and cancer.
Biochim. Biophys. Acta
1808
:
1400
1412
.
157
Merighi
,
S.
,
A.
Benini
,
P.
Mirandola
,
S.
Gessi
,
K.
Varani
,
C.
Simioni
,
E.
Leung
,
S.
Maclennan
,
P. G.
Baraldi
,
P. A.
Borea
.
2007
.
Caffeine inhibits adenosine-induced accumulation of hypoxia-inducible factor-1alpha, vascular endothelial growth factor, and interleukin-8 expression in hypoxic human colon cancer cells.
Mol. Pharmacol.
72
:
395
406
.
158
Merighi
,
S.
,
A.
Benini
,
P.
Mirandola
,
S.
Gessi
,
K.
Varani
,
E.
Leung
,
S.
MacLennan
,
P. G.
Baraldi
,
P. A.
Borea
.
2005
.
A3 adenosine receptors modulate hypoxia-inducible factor-1alpha expression in human A375 melanoma cells.
Neoplasia
7
:
894
903
.
159
Madi
,
L.
,
S.
Bar-Yehuda
,
F.
Barer
,
E.
Ardon
,
A.
Ochaion
,
P.
Fishman
.
2003
.
A3 adenosine receptor activation in melanoma cells: association between receptor fate and tumor growth inhibition.
J. Biol. Chem.
278
:
42121
42130
.
160
Bar-Yehuda
,
S.
,
F.
Barer
,
L.
Volfsson
,
P.
Fishman
.
2001
.
Resistance of muscle to tumor metastases: a role for a3 adenosine receptor agonists.
Neoplasia
3
:
125
131
.
161
Fishman
,
P.
,
S.
Bar-Yehuda
,
F.
Barer
,
L.
Madi
,
A. S.
Multani
,
S.
Pathak
.
2001
.
The A3 adenosine receptor as a new target for cancer therapy and chemoprotection.
Exp. Cell Res.
269
:
230
236
.
162
Hatfield
,
S. M.
,
J.
Kjaergaard
,
D.
Lukashev
,
T. H.
Schreiber
,
B.
Belikoff
,
R.
Abbott
,
S.
Sethumadhavan
,
P.
Philbrook
,
K.
Ko
,
R.
Cannici
, et al
.
2015
.
Immunological mechanisms of the antitumor effects of supplemental oxygenation.
Sci. Transl. Med.
7
:
277ra30
.
163
Hatfield
,
S. M.
,
J.
Kjaergaard
,
D.
Lukashev
,
B.
Belikoff
,
T. H.
Schreiber
,
S.
Sethumadhavan
,
R.
Abbott
,
P.
Philbrook
,
M.
Thayer
,
D.
Shujia
, et al
.
2014
.
Systemic oxygenation weakens the hypoxia and hypoxia inducible factor 1α-dependent and extracellular adenosine-mediated tumor protection.
J. Mol. Med.
92
:
1283
1292
.
164
Chiu
,
D. K.
,
A. P.
Tse
,
I. M.
Xu
,
J.
Di Cui
,
R. K.
Lai
,
L. L.
Li
,
H. Y.
Koh
,
F. H.
Tsang
,
L. L.
Wei
,
C. M.
Wong
, et al
.
2017
.
Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma.
Nat. Commun.
8
:
517
.
165
Locatelli
,
F.
,
S.
Fishbane
,
G. A.
Block
,
I. C.
Macdougall
.
2017
.
Targeting hypoxia-inducible factors for the treatment of anemia in chronic kidney disease patients.
Am. J. Nephrol.
45
:
187
199
.
166
Cummins
,
E. P.
,
F.
Seeballuck
,
S. J.
Keely
,
N. E.
Mangan
,
J. J.
Callanan
,
P. G.
Fallon
,
C. T.
Taylor
.
2008
.
The hydroxylase inhibitor dimethyloxalylglycine is protective in a murine model of colitis.
Gastroenterology
134
:
156
165
.
167
Robinson
,
A.
,
S.
Keely
,
J.
Karhausen
,
M. E.
Gerich
,
G. T.
Furuta
,
S. P.
Colgan
.
2008
.
Mucosal protection by hypoxia-inducible factor prolyl hydroxylase inhibition.
Gastroenterology
134
:
145
155
.
168
Gupta
,
R.
,
A. R.
Chaudhary
,
B. N.
Shah
,
A. V.
Jadhav
,
S. P.
Zambad
,
R. C.
Gupta
,
S.
Deshpande
,
V.
Chauthaiwale
,
C.
Dutt
.
2014
.
Therapeutic treatment with a novel hypoxia-inducible factor hydroxylase inhibitor (TRC160334) ameliorates murine colitis.
Clin. Exp. Gastroenterol.
7
:
13
23
.
169
Glover
,
L. E.
,
B. E.
Bowers
,
B.
Saeedi
,
S. F.
Ehrentraut
,
E. L.
Campbell
,
A. J.
Bayless
,
E.
Dobrinskikh
,
A. A.
Kendrick
,
C. J.
Kelly
,
A.
Burgess
, et al
.
2013
.
Control of creatine metabolism by HIF is an endogenous mechanism of barrier regulation in colitis.
Proc. Natl. Acad. Sci. USA
110
:
19820
19825
.
170
Okumura
,
C. Y.
,
A.
Hollands
,
D. N.
Tran
,
J.
Olson
,
S.
Dahesh
,
M.
von Köckritz-Blickwede
,
W.
Thienphrapa
,
C.
Corle
,
S. N.
Jeung
,
A.
Kotsakis
, et al
.
2012
.
A new pharmacological agent (AKB-4924) stabilizes hypoxia inducible factor-1 (HIF-1) and increases skin innate defenses against bacterial infection.
J. Mol. Med.
90
:
1079
1089
.
171
Bruick
,
R. K.
,
S. L.
McKnight
.
2001
.
A conserved family of prolyl-4-hydroxylases that modify HIF.
Science
294
:
1337
1340
.
172
Marks
,
E.
,
B. J.
Goggins
,
J.
Cardona
,
S.
Cole
,
K.
Minahan
,
S.
Mateer
,
M. M.
Walker
,
R.
Shalwitz
,
S.
Keely
.
2015
.
Oral delivery of prolyl hydroxylase inhibitor: AKB-4924 promotes localized mucosal healing in a mouse model of colitis.
Inflamm. Bowel Dis.
21
:
267
275
.
173
Gibson
,
D. J.
,
L.
Elliott
,
E.
McDermott
,
M.
Tosetto
,
D.
Keegan
,
K.
Byrne
,
S. T.
Martin
,
T.
Rispens
,
G.
Cullen
,
H. E.
Mulcahy
, et al
.
2015
.
Heightened expression of CD39 by regulatory T lymphocytes is associated with therapeutic remission in inflammatory bowel disease.
Inflamm. Bowel Dis.
21
:
2806
2814
.
174
Mabley
,
J.
,
F.
Soriano
,
P.
Pacher
,
G.
Haskó
,
A.
Marton
,
R.
Wallace
,
A.
Salzman
,
C.
Szabó
.
2003
.
The adenosine A3 receptor agonist, N6-(3-iodobenzyl)-adenosine-5′-N-methyluronamide, is protective in two murine models of colitis.
Eur. J. Pharmacol.
466
:
323
329
.
175
Ren
,
T.
,
I.
Grants
,
M.
Alhaj
,
M.
McKiernan
,
M.
Jacobson
,
H. H.
Hassanain
,
W.
Frankel
,
J.
Wunderlich
,
F. L.
Christofi
.
2011
.
Impact of disrupting adenosine A3 receptors (A3/ AR) on colonic motility or progression of colitis in the mouse.
Inflamm. Bowel Dis.
17
:
1698
1713
.
176
Ren
,
T.
,
T.
Tian
,
X.
Feng
,
S.
Ye
,
H.
Wang
,
W.
Wu
,
Y.
Qiu
,
C.
Yu
,
Y.
He
,
J.
Zeng
, et al
.
2015
.
An adenosine A3 receptor agonist inhibits DSS-induced colitis in mice through modulation of the NF-κB signaling pathway.
Sci. Rep.
5
:
9047
.
177
Wigerup
,
C.
,
S.
Påhlman
,
D.
Bexell
.
2016
.
Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer.
Pharmacol. Ther.
164
:
152
169
.
178
Mittal
,
D.
,
A.
Young
,
K.
Stannard
,
M.
Yong
,
M. W.
Teng
,
B.
Allard
,
J.
Stagg
,
M. J.
Smyth
.
2014
.
Antimetastatic effects of blocking PD-1 and the adenosine A2A receptor.
Cancer Res.
74
:
3652
3658
.
179
Beavis
,
P. A.
,
N.
Milenkovski
,
M. A.
Henderson
,
L. B.
John
,
B.
Allard
,
S.
Loi
,
M. H.
Kershaw
,
J.
Stagg
,
P. K.
Darcy
.
2015
.
Adenosine receptor 2A blockade increases the efficacy of anti-PD-1 through enhanced antitumor T-cell responses.
Cancer Immunol. Res.
3
:
506
517
.
180
Chen
,
J. F.
,
H. K.
Eltzschig
,
B. B.
Fredholm
.
2013
.
Adenosine receptors as drug targets—what are the challenges?
Nat. Rev. Drug Discov.
12
:
265
286
.

The authors have no financial conflicts of interest.