Inflammasomes are cytoplasmic multiprotein complexes that coordinate inflammatory responses, including those that take place during pregnancy. Inflammasomes and their downstream mediators caspase-1 and IL-1β are expressed by gestational tissues (e.g., the placenta and chorioamniotic membranes) during normal pregnancy. Yet, only the activation of the NLRP3 inflammasome in the chorioamniotic membranes has been partially implicated in the sterile inflammatory process of term parturition. In vivo and ex vivo studies have consistently shown that the activation of the NLRP3 inflammasome is a mechanism whereby preterm labor and birth occur in the context of microbial- or alarmin-induced inflammation. In the placenta, the activation of the NLRP3 inflammasome is involved in the pathogenesis of preeclampsia and other pregnancy syndromes associated with placental inflammation. This evidence suggests that inhibition of the NLRP3 inflammasome or its downstream mediators may foster the development of novel anti-inflammatory therapies for the prevention or treatment of pregnancy complications.

Inflammasomes are cytosolic multiprotein complexes that typically consist of a sensor molecule (e.g., a pattern recognition receptor or PRR), the adaptor protein (apoptosis-associated speck-like protein containing a caspase recruitment domain [ASC]), and the proinflammatory caspase-1 (1). Inflammasome sensor molecules are responsible for recognizing pathogen-associated molecular patterns (PAMPs) and endogenous danger signals/alarmins/damage-associated molecule patterns (DAMPs) (211). Upon recognition, oligomerization of the inflammasome complex and activation of caspase-1 occur (27), which initiates downstream responses, including the processing and release of IL-1β and IL-18 (1218) as well as pyroptosis, a lytic form of cell death (1922). Inflammasomes were thought to be exclusive to innate immune signaling (1, 23); however, recent reports showed that these platforms also promote adaptive immune responses (2426). Several members of the nucleotide-binding oligomerization domain leucine-rich repeat-containing protein (NLR) family function as the sensor molecules of the inflammasome (1, 27, 28); therefore, it was initially thought that NLR signaling was inherent to inflammasome activation (2). Consequently, multiple NLR-dependent inflammasomes were described, namely NLR and pyrin domain–containing protein (NLRP)-1 (1), NLRP3 (28), and NLR family caspase activation and recruitment domain (CARD) domain–containing protein-4 (NLRC4) (27, 29). Yet, NLR-independent inflammasomes that are driven by alternative sensor molecules such as absent in melanoma-2 (AIM2) (3033) and pyrin (34) have also been described.

To date, five distinct inflammasomes have been well characterized, each identified by its specific sensor molecule: NLRP1, NLRP3, NLRC4, AIM2, and pyrin (27). Other inflammasomes that require further characterization of their specific ligands, mechanisms of action, and roles in disease include NLRP6 (35), NLRP7 (36), NLRP12 (37), retinoic acid–inducible gene-I (RIG-I) (38, 39), and IFN-γ–inducible protein-16 (IFI16) (40, 41). Next, we will provide a brief overview of the NLRP1, NLRC4, AIM2, pyrin, and NLRP3 inflammasomes.

The NLRP1 inflammasome was the first to be described (1) and exists as a single protein in humans, whereas mice express multiple NLRP1 paralogues (42). Initial reports showed that NLRP1 responds to the lethal toxin of Bacillus anthracis (42), and subsequent studies indicated that this inflammasome also responds to Toxoplasma gondii (43), Listeria monocytogenes, and Shigella flexneri (44). The NLRP1 inflammasome can also be activated by the microbial product muramyl-dipeptide, a component of peptidoglycan (45). Interestingly, mutations in NLRP1 have been associated with severe inflammatory skin disorders (46), which may be due to the high expression of this molecule in keratinocytes (46). Therefore, the NLRP1 inflammasome is implicated in host defense against pathogens and skin homeostasis.

NLRC4 was first characterized as an apoptotic-protease activating factor-1 (APAF1)–related protein (27) and was shown to induce inflammasome activation in response to Salmonella typhimurium infection in mice (29). Subsequent reports indicated that the murine NLRC4 inflammasome was activated in response to flagellin (47) as well as multiple components of the bacterial type 3 secretion system (T3SS) (48). The NLRC4 inflammasome is unique in that it relies on multiple NLR family apoptosis inhibitory proteins (NAIPs) (49) to detect specific bacterial proteins [e.g., T3SS rod protein in mice (48, 50) and T3SS needle subunit in humans (48)]. NAIPs can then interact with NLRC4 to trigger the assembly of this inflammasome (48, 50). Humans express only one NAIP with at least two reported isoforms (51), which recognize Chromobacterium violaceum and Salmonella flagellin (48, 51). The assembly of the NLRC4 inflammasome may also require the phosphorylation of NLRC4 (52), highlighting the complexity of the mechanisms by which this inflammasome is activated.

The AIM2 inflammasome is unique in that it is activated by cytosolic DNA of microbial or host origin independently of NLRP3 and TLR signaling (3032, 53). In the absence of cytosolic DNA, AIM2 exists in an autoinhibitory state with its HIN200 domain tightly bound to the pyrin domain (PYD) (54, 55). The binding of cytosolic DNA to HIN200 releases the protected PYD, allowing for self-oligomerization and interaction with ASC to initiate inflammasome assembly (54, 55). The AIM2 inflammasome orchestrates host defense against DNA viruses such as CMV and vaccinia virus, as well as infections with intracellular bacterial pathogens (3032, 53, 56, 57). In addition, the AIM2 inflammasome is implicated in the pathogenesis of psoriasis (58) and prostate cancer (59). Hence, the AIM2 inflammasome participates in host defense and tumor progression (5).

The most recently discovered of the well-characterized inflammasomes is the Pyrin inflammasome (34, 60). This inflammasome indirectly responds to Burkholderia cenocepacia and Clostridium difficile (34, 60) by sensing the bacterial modification and inactivation of Rho GTPases (60). Such modifications include glycosylation, adenylation, and ADP-ribosylation, all of which result in activation of the Pyrin inflammasome; yet, direct interactions between Rho and Pyrin have not been detected (60). Interestingly, recent reports indicate that the activation of the Pyrin inflammasome can occur in response to microtubule disruption and other cytoskeletal modifications resulting from microbial infection, rather than in response to the pathogen itself (61, 62). More recently, it was shown that specific bile acid analogs can directly activate the Pyrin inflammasome, suggesting a new mechanism whereby the production of bile acid metabolites by gut microbiota could affect host innate immune responses (63). Therefore, the Pyrin inflammasome can participate in host defense responses and gut homeostasis.

The most widely studied of the inflammasomes is the NLRP3 inflammasome (23, 28, 6466). This inflammasome has two key characteristics: first, it can be activated by a wide range of unrelated molecules, including PAMPs (64, 67) and both endogenous and exogenous DAMPs or alarmins (23, 66, 68), as has been previously reviewed (11). Second, the NLRP3 inflammasome is highly expressed in innate immune cells such as macrophages, neutrophils, and dendritic cells (23, 69, 70), as well as in multiple tissues (23, 68, 7173). Notably, classical or canonical activation of the NLRP3 inflammasome requires two distinct steps: priming and assembly (74, 75). The priming step is initiated by inflammatory stimuli via surface PRRs such as TLRs, which induce NF-κB activation resulting in the increase of NLRP3 and pro–IL-1β (76). The second step includes multiple signaling events occurring upon recognition of the PAMP or DAMP, which, in turn, promotes the assembly of the inflammasome complex, the cleavage of caspase-1, and subsequent processing and release of IL-1β and IL-18 (11). The activation of the NLRP3 inflammasome has been associated with multiple cellular events, including potassium efflux (77, 78), lysosomal rupture (79), mitochondrial dysfunction (80), calcium influx (81, 82), and decreased cellular cAMP levels (82), many of which seemed to depend on the activating stimulus. A later study suggested that potassium efflux is a common cellular event associated with NLRP3 inflammasome activation by showing that multiple microbial and endogenous signals induce a drop in cytosolic potassium that is sufficient to activate this inflammasome (83). Yet, even potassium efflux–independent pathways of NLRP3 inflammasome activation have been described (84). Further studies are required to elucidate all of the cellular pathways associated with the canonical activation of this inflammasome.

In addition to the canonical activation pathway of the NLRP3 inflammasome, this inflammasome can also be indirectly triggered by caspase-11 in mice (85) [or the homologs caspase-4 and caspase-5 in humans (85, 86)], which has been termed the noncanonical activation pathway (87). The noncanonical pathway was first described in murine macrophages infected with Escherichia coli, Citrobacter rodentium, and Vibrio cholera (87). Specifically, this report showed that caspase-11 was required for the noncanonical activation of the NLRP3 inflammasome, which subsequently leads to the cleavage of caspase-1 and release of IL-1β and IL-18 (87). Notably, in the noncanonical pathway, caspase-11 directly recognizes and binds to intracellular LPS (88, 89), resulting in its oligomerization and activation by autoproteolytic cleavage (90). Active caspase-11 can then directly induce the cleavage of gasdermin D (GSDMD) to cause pyroptosis (e.g., release of caspase-1–processed IL-1β and IL-18) (91, 92).

In summary, inflammasomes mediate central processes during host defense against pathogens and immunoregulation, whose processes are essential for homeostasis (93). Hence, aberrations in inflammasome activation can be implicated in the pathogenesis of disease (93). In this review, we focus on describing the role of inflammasomes during normal pregnancy and its complications, including preterm labor and birth [the leading cause of perinatal morbidity and mortality worldwide (94, 95)] and pregnancy disorders associated with placental inflammation.

Inflammation is a key process in reproductive success because it is required for implantation (96), pregnancy maintenance (97), and parturition (98100). Therefore, it is tempting to propose that inflammasomes are involved in each of the above processes and, consequently, their components are expressed by the gestational tissues.

Inflammasome components in the gestational tissues.

Inflammasome components have been detected during pregnancy in both maternal and fetal compartments. Initial reports showed that NLRP3 (101103), NLRC4 (104), and NLRP1 (103) are expressed by peripheral leukocytes of pregnant women. In the placenta [organ serving as the lungs, liver, and kidney for the fetus (105)], a tissue-wide survey revealed that multiple sensor molecules, including NLRP1, NLRP3, and NLRC4 were expressed (106). In the first trimester, in vitro studies have shown that placental cells (e.g., trophoblasts) expressed NLRP1, NLRP3, and NLRC4 (107, 108), as well as NLRP2 (109). At term (≥37 wk of gestation), placental tissues also expressed these sensor molecules (107, 110115). Mirroring the expression of the NLRs, the adaptor protein ASC (or PYCARD) is also expressed in the placenta throughout pregnancy (106108, 114, 115). The chorioamniotic membranes [also known as the extraplacental membranes—fetal tissues forming the amniotic cavity (116)] expressed sensor molecules of the inflammasome, namely NLRP1 (117), NLRP3 (110, 117), NLRC4 (117), and AIM2 (117), as well as ASC (118). Immune cells infiltrating the chorioamniotic membranes (e.g., choriodecidual leukocytes) also expressed ASC (118). Moreover, NLRP3 is expressed by myometrial tissues from women at term pregnancy (119). Together with the fact that inflammatory caspases (caspase-1 and caspase-4) have been detected in the human placenta (111114, 120, 121), chorioamniotic membranes (111, 117, 118, 122, 123), and myometrium (122), this evidence indicates that gestational tissues possess the machinery to initiate inflammasome-mediated immune responses during pregnancy. Fig. 1 includes a schematic representation of the inflammasome-related molecules reported in the chorioamniotic membranes during normal pregnancy.

FIGURE 1.

Inflammasomes in the chorioamniotic membranes during normal parturition. Representative image of the chorioamniotic membranes (amnion, chorion, and decidua) surrounding the amniotic cavity containing the fetus and amniotic fluid. The NLRP1, AIM2, NLRC4, and NLRP3 sensor molecules have been detected in the chorioamniotic membranes during normal pregnancy. The activation of the NLRP3 inflammasome leading to pyroptosis has been implicated in the physiological mechanisms of term parturition.

FIGURE 1.

Inflammasomes in the chorioamniotic membranes during normal parturition. Representative image of the chorioamniotic membranes (amnion, chorion, and decidua) surrounding the amniotic cavity containing the fetus and amniotic fluid. The NLRP1, AIM2, NLRC4, and NLRP3 sensor molecules have been detected in the chorioamniotic membranes during normal pregnancy. The activation of the NLRP3 inflammasome leading to pyroptosis has been implicated in the physiological mechanisms of term parturition.

Close modal

Inflammasomes in term parturition.

Parturition represents a form of physiological inflammation (99, 124) that is considered sterile in nature, given that the majority of women who undergo labor do not have culturable microorganisms in the amniotic cavity (125). This concept is supported by numerous studies showing an increased bioavailability of cytokines (126135) and chemokines (136140) in the amniotic fluid, maternal circulation (141, 142), and gestational tissues such as the placenta (143145), chorioamniotic membranes (124, 145153), myometrium (147, 149, 151, 152, 154), and cervix (147, 149, 152, 155, 156) during labor. This sterile inflammatory process occurs in conjunction with an influx of innate and adaptive immune cells into the choriodecidua (cell layer attached to the chorioamniotic membranes) (147, 157168), myometrium (169174), and cervix (149, 169, 175183). Recent reports have established that inflammasomes also participate in the proinflammatory milieu of parturition (117, 118, 184). Next, we discuss the evidence supporting such a concept.

The first link between the inflammasome and parturition was reported in 2008 by Gotsch et al. (184) who measured caspase-1 in amniotic fluid [biological fluid with physiological and immune properties that surrounds the fetus throughout gestation (185187)]. These authors reported that the inflammasome-dependent caspase-1 was detected in amniotic fluid of women at term pregnancy, but not in the second trimester (184). In addition, caspase-1 concentrations in amniotic fluid were increased in women with spontaneous labor at term (184). These findings are in line with reports showing that the main downstream product of the inflammasome, IL-1β, is elevated in women undergoing the physiological process of labor at term (127, 128, 145). Yet, amniotic fluid concentrations of IL-18 do not increase during term parturition (188). Amniotic fluid concentrations of the adaptor protein ASC and the effector protein of pyroptosis GSDMD are also increased in women with spontaneous labor at term (189, 190). The findings described above led us to hypothesize that the chorioamniotic membranes, tissues that surround the amniotic cavity, display an increased expression of the sensor molecules, the adaptor protein, and inflammatory caspases during the process of parturition at term. Consistent with this hypothesis, we and others found that the chorioamniotic membranes expressed NLRP1, NLRP3, AIM2, and NLCR4 (117) as well as the inflammatory caspase-1 (117, 122) and caspase-4 (117). Yet, only the priming and activation of the NLRP3 inflammasome, as evidenced by the upregulation of the sensor molecule and increased amounts of the active forms of caspase-1 and mature IL-1β, was observed in the chorioamniotic membranes of women with labor at term (117). The assembly of the NLRP3 inflammasome was later confirmed by localization of ASC/caspase-1 complexes and ASC specks [a readout of inflammasome activation (191)] in the chorioamniotic membranes and choriodecidual leukocytes of women with labor at term (118, 189). Subsequent studies also suggested that the NLRP3 inflammasome is involved in the inflammatory process of labor in the myometrium (119). The final piece of evidence showing a partial role for the NLRP3 inflammasome in the physiological process of labor was generated when pregnant dams were treated with an inhibitor of NLRP3 inflammasome assembly, MCC950 (192), and arrest of labor (i.e., dystocia) was observed in a subset of animals (193). Collectively, the abovementioned studies indicate that the activation of the NLRP3 inflammasome in the amniotic cavity and surrounding tissues occurs as part of the sterile inflammatory milieu that accompanies physiological labor at term (Fig. 1).

Not all term pregnancies occur in the absence of pathologic conditions. A subset of women with labor at term are diagnosed with acute histologic chorioamnionitis (194). This placental lesion is associated with intra-amniotic infection (i.e., inflammation with detectable microorganisms in the amniotic fluid) or sterile intra-amniotic inflammation (i.e., inflammation without detectable microorganisms in amniotic fluid) (195). Acute histologic chorioamnionitis is characterized by the invasion of neutrophils and macrophages into the chorioamniotic membranes (196) and is associated with elevated concentrations of proinflammatory cytokines such as IL-1β in amniotic fluid (197, 198). Therefore, we hypothesized that inflammasomes may be involved in the process of parturition associated with acute placental inflammation. In line with this hypothesis, NLRP3 and NLRC4 as well as the active/mature forms of caspase-1, IL-1β, and IL-18 were increased in the chorioamniotic membranes of women with labor at term and acute chorioamnionitis compared with those without this placental lesion (199). Enhanced inflammasome assembly in the chorioamniotic membranes of women with acute chorioamnionitis was later confirmed by detection of ASC/caspase-1 complexes (118). Furthermore, amniotic fluid concentrations of the adaptor protein ASC are increased in women with acute histologic chorioamnionitis at term (200). These descriptive findings are consistent with in vitro studies showing that the incubation of the chorioamniotic membranes with microbial products (e.g., LPS) induces the processing of the active forms of caspase-1 and the release of IL-1β, which is blocked by caspase-1 inhibitors (110, 122, 199, 201). Together, these studies suggest that the NLRP3 and NLRC4 inflammasomes may be involved in the pathological inflammatory process of labor at term associated with intra-amniotic infection. Yet, further in vivo studies are needed to investigate whether these inflammasomes are indeed implicated in the acute inflammation of the placental tissues at term pregnancy.

Spontaneous preterm labor is a syndrome of multiple etiologies (202) that commonly leads to preterm birth, the leading cause of perinatal morbidity and mortality worldwide (94, 203, 204). The best studied cause for preterm labor is intra-amniotic inflammation (205214), which can occur as a consequence of microbial invasion of the amniotic cavity (i.e., intra-amniotic infection) or as a result of elevated concentrations of danger signals or alarmins in amniotic fluid (i.e., sterile intra-amniotic inflammation) (215, 216). Both clinical conditions are characterized by increased cytokine concentrations (126, 128, 129, 136138, 188, 217223) and elevated numbers of immune cells (187, 224231) in amniotic fluid. One of the central players in this intra-amniotic inflammatory response is IL-1β (128, 222), given that this cytokine orchestrates the production of labor mediators such as PGs (232238). Indeed, the administration of IL-1β induces preterm birth in mice (239, 240) and nonhuman primates (208, 241245). The abovementioned studies led us to investigate whether inflammasomes, the primary machinery of IL-1β processing, were implicated in the intra-amniotic inflammatory response that accompanies preterm labor and birth. Next, we discuss the evidence indicating a role for the inflammasome in intra-amniotic infection– and sterile intra-amniotic inflammation–associated preterm labor and birth.

Intra-amniotic infection–associated preterm labor and birth.

The first evidence suggesting a role for the inflammasome in the mechanisms that lead to preterm labor and birth in the context of intra-amniotic infection was generated by Gotsch et al. (184). These authors reported that amniotic fluid concentrations of caspase-1 were increased in women with preterm labor and intra-amniotic infection compared with those without this clinical condition (184). Such findings were in line with prior studies showing that amniotic fluid concentrations of IL-1β (126, 128, 222, 246, 247) and IL-18 (188, 248) were also elevated in women with preterm labor and intra-amniotic infection. This clinical evidence led us to investigate whether inflammasomes were involved in the pathophysiology of preterm labor/birth in the context of inflammation induced by microbes. First, we showed that women with preterm labor and birth and acute chorioamnionitis [a placental sign of intra-amniotic infection (196, 249, 250)] displayed priming of the NLRP3 inflammasome as evidenced by the upregulation of NLRP3, caspase-1, caspase-4, IL-1β, and IL-18 in the chorioamniotic membranes (251). Next, the activation of the NLRP3 inflammasome was confirmed by increased concentrations of active caspase-1 and caspase-4 and mature forms of IL-1β and IL-18, as well as enhanced formation of ASC/caspase-1 complexes in the chorioamniotic membranes of women with preterm labor and acute chorioamnionitis (251). The increased concentrations of active caspase-4 suggest that noncanonical inflammasome activation may occur in the context of preterm labor resulting from intra-amniotic infection due to Gram-negative bacteria. Recently, we also found that amniotic fluid concentrations of the adaptor protein ASC (252) and the effector molecule of pyroptosis GSDMD (253) were increased in women with preterm labor and intra-amniotic infection compared with those without this clinical condition. Both ASC and GSDMD are also overexpressed by the chorioamniotic membranes of women with preterm labor and intra-amniotic infection. Taken together, these data provide descriptive evidence supporting a role for the NLRP3 inflammasome in the pathophysiology of intra-amniotic infection–associated preterm labor and birth.

Causal links between the activation of the NLRP3 inflammasome and preterm labor and birth in the context of infection include the following: 1) the intrauterine administration of peptidoglycan and poly(I:C) increased the expression of NLRP3 and caspase-1, as well as increased amounts of active caspase-1, in the uterine tissues (254); 2) the deficiency of Nlrp3 protects against group B Streptococcus–induced preterm birth (255); 3) the combined injection of MHV-68 and LPS induces preterm birth (256, 257) by causing exaggerated inflammation in the fetal membranes, which was suggested to occur in part through the activation of the NLRP3 inflammasome (201); and 4) the ultrasound-guided intra-amniotic administration of LPS induced priming and activation of the NLRP3 inflammasome in the fetal membranes prior to preterm birth, which was alleviated by blocking the assembly of the NLRP3 inflammasome using MCC950 (258). Preliminary data from our group suggest that the NLRP3 inflammasome is also implicated in host defense mechanisms against genital mycoplasmas (K. Motomura, R. Romero, and N. Gomez-Lopez, unpublished data). It is worth mentioning that inhibition of the inflammasome in the context of intra-amniotic infection does not fully prevent adverse pregnancy and neonatal outcomes (258), indicating that the blockade of multiple pathways (including other inflammasomes) may be necessary to prevent preterm birth caused by microbes invading the amniotic cavity. Further studies are required to investigate whether clinically isolated bacterial cultivars associated with preterm labor and birth induce the activation of the NLRP3 inflammasome in vivo and whether conventional treatments are effective for prevention of adverse pregnancy outcomes.

Sterile intra-amniotic inflammation–induced preterm labor and birth.

A link between the NLRP3 inflammasome and the mechanisms leading to sterile intra-amniotic inflammation–associated preterm labor and birth was first hypothesized upon the observation that placentas from women with intra-amniotic inflammation without detectable microorganisms are diagnosed with acute chorioamnionitis (215, 216) and display characteristics of NLRP3 inflammasome activation (251). This hypothesis was confirmed by recent reports showing that women with preterm labor and sterile intra-amniotic inflammation have increased concentrations of ASC (252) and GSDMD (253) in amniotic fluid and the chorioamniotic membranes. These clinical observations led us to investigate the mechanisms whereby danger signals or alarmins, molecules that initiate sterile inflammation (259261), trigger inflammatory processes in the amniotic cavity and chorioamniotic membranes. First, we showed that the ultrasound-guided intra-amniotic administration of the classical alarmin HMGB1, a molecule that is present in amniotic fluid of women with preterm labor (262), induces preterm birth in mice (263). Next, using an ex vivo model of intra-amniotic inflammation, we reported that HMGB1 causes the priming and activation of the NLRP3 inflammasome in the chorioamniotic membranes (264). Recently, we also provided in vivo evidence that the alarmin S100B can induce sterile intra-amniotic inflammation by activating the NLRP3 inflammasome in the fetal membranes prior to inducing preterm birth (193). Furthermore, we have generated data showing that the ultrasound-guided intra-amniotic injection of the alarmin IL-1a induces preterm labor and birth via the NLRP3 inflammasome (K. Motomura, R. Romero, V. Garcia-Flores, R. Slutsky, D. Levenson, J. Galaz, and N. Gomez-Lopez, submitted for publication). Importantly, by inhibiting the assembly of this inflammasome using MCC950, alarmin-induced preterm birth can be prevented in most cases (193). These findings have clinical implications given that we have proposed to use inhibitors of the NLRP3 inflammasome as a therapeutic strategy for sterile intra-amniotic inflammation, a condition that currently lacks treatment (193). Additional studies are required to investigate whether other alarmins [e.g., heat shock protein 70 (HSP70) (265)] present in amniotic fluid of women with preterm labor and sterile intra-amniotic inflammation can activate the NLRP3 inflammasome in the fetal membranes, inducing preterm labor and birth.

Fig. 2 includes a representation of the proposed role for the canonical and noncanonical NLRP3 inflammasome pathways in the pathophysiology of preterm labor and birth in the context of intra-amniotic infection or sterile intra-amniotic inflammation.

FIGURE 2.

The NLRP3 inflammasome in preterm labor and birth. Bacteria (e.g., genital mycoplasmas) or alarmins (e.g., HMGB1, S100B, or IL-1α) can activate the canonical NLRP3 inflammasome pathway in the chorioamniotic membranes, which results in the release of active caspase-1 and mature forms of IL-1β and IL-18 into the amniotic fluid. Gram-negative bacteria may also activate the noncanonical NLRP3 inflammasome pathway. Detection of extracellular ASC and GSDMD in the chorioamnioitic membranes and amniotic fluid have also been reported as readouts of inflammasome activation and pyroptosis, respectively.

FIGURE 2.

The NLRP3 inflammasome in preterm labor and birth. Bacteria (e.g., genital mycoplasmas) or alarmins (e.g., HMGB1, S100B, or IL-1α) can activate the canonical NLRP3 inflammasome pathway in the chorioamniotic membranes, which results in the release of active caspase-1 and mature forms of IL-1β and IL-18 into the amniotic fluid. Gram-negative bacteria may also activate the noncanonical NLRP3 inflammasome pathway. Detection of extracellular ASC and GSDMD in the chorioamnioitic membranes and amniotic fluid have also been reported as readouts of inflammasome activation and pyroptosis, respectively.

Close modal

Given that inflammasome components are expressed by placental cells, as reviewed above, early studies have suggested that inflammasomes are implicated in the inflammatory responses associated with placental disease. Mulla et al. (107) and Xie et al. (101) were the first to demonstrate that NLRP3 inflammasome activation in trophoblasts and peripheral blood was implicated in the pathogenesis of preeclampsia. Indeed, it has been shown that peripheral monocytes from women with preeclampsia display enhanced expression of NLRP1 and NLRP3 (103, 266, 267), and polymorphisms in their coding genes are associated with the development of this syndrome (268, 269). In addition, women with preeclampsia had elevated levels of total cholesterol and uric acid, cellular metabolites that act as alarmins when released extracellularly (270, 271), which can potentially activate the NLRP3 inflammasome in the syncytiotrophoblast layer of the placenta (113). Descriptive studies have also shown that placentas from women with severe preeclampsia display higher expression of NLRP3, caspase-1, and IL-1β compared with normotensive pregnant women (121, 272). Further, in vivo studies (120, 273275) have provided a link between alarmin-induced activation of placental NLRP3 inflammasomes and the resulting placental inflammation–associated pregnancy complications. In line with this evidence, a recent study using murine models and human tissues showed that endothelial-derived extracellular vesicles induce NLRP3 inflammasome activation, triggering a preeclampsia-like syndrome that can be attenuated by inhibition of this pathway (276). Taken together, these findings suggest that NLRP3 inflammasome activation is implicated in the placental inflammatory processes associated with the pathophysiology of preeclampsia (Fig. 3).

FIGURE 3.

Inflammasomes in placental inflammation. Endothelial-derived extracellular vesicles and/or alarmins (e.g., cholesterol or uric acid) can activate the NLRP3, NLRP1, and NLRP7 inflammasomes in the placenta, leading to the processing and release of active caspase-1 and mature IL-1β. The resulting inflammation may lead to placental diseases such as preeclampsia and fetal growth restriction.

FIGURE 3.

Inflammasomes in placental inflammation. Endothelial-derived extracellular vesicles and/or alarmins (e.g., cholesterol or uric acid) can activate the NLRP3, NLRP1, and NLRP7 inflammasomes in the placenta, leading to the processing and release of active caspase-1 and mature IL-1β. The resulting inflammation may lead to placental diseases such as preeclampsia and fetal growth restriction.

Close modal

Moreover, in vitro and in vivo studies have shown that inflammatory stimuli (e.g., LPS or uric acid) induce the activation of the NLRP3 inflammasome in the placenta (107, 108, 277), which may also contribute to the mechanisms of disease of other pregnancy complications associated with placental inflammation such as antiphospholipid syndrome (277279), gestational diabetes (280), and fetal growth restriction (120). Recent studies showed that the NLRP7 inflammasome is a key regulator of placental development and hypoxia, the impairment of which can lead to fetal growth restriction (281). This finding suggests that the NLRP7 inflammasome, which has been previously shown to be activated by microbial products (36), may also be triggered by nonmicrobial signals resulting from hypoxic conditions in the placenta (281) (Fig. 3). Yet, further studies are required to investigate whether the inhibition of inflammasomes can be considered as a strategy to prevent placental inflammation–associated disorders.

Growing evidence has consistently shown that inflammasomes are implicated in the physiological and pathological inflammatory processes of pregnancy. Several inflammasomes have been detected in the gestational tissues, yet only the NLRP3 inflammasome in the chorioamniotic membranes has been implicated in the mechanisms that lead to the sterile inflammatory process of term parturition. The premature activation of the NLRP3 inflammasome in the chorioamniotic membranes is now established to be an important mechanism whereby microbes or danger signals induce preterm labor and birth. The activation of the NLRP3 inflammasome in the placenta has also been involved in the pathogenesis of preeclampsia and other placental disorders. This evidence could foster the development of novel anti-inflammatory therapies based on the inhibition of the NLRP3 inflammasome for the prevention or treatment of pregnancy complications.

We are grateful to Marcia Arenas-Hernandez, M.Sc. for critical discussion of some sections included in this review.

This work was supported in part by the Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services (NICHD/NIH/DHHS) and in part with federal funds from NICHD/NIH/DHHS under contract HHSN275201300006C. R.R. has contributed to this work as part of his official duties as an employee of the U.S. federal government. N.G.-L. is also supported by the Wayne State University Perinatal Initiative in Maternal, Perinatal and Child Health.

Abbreviations used in this article:

     
  • AIM2

    absent in melanoma-2

  •  
  • ASC

    apoptosis-associated speck-like protein containing a caspase recruitment domain

  •  
  • DAMP

    damage-associated molecule pattern

  •  
  • GSDMD

    gasdermin D

  •  
  • NAIP

    NLR family apoptosis inhibitory protein

  •  
  • NLR

    nucleotide-binding oligomerization domain leucine-rich repeat-containing protein

  •  
  • NLRC4

    CARD domain–containing protein-4

  •  
  • NLRP

    NLR and pyrin domain–containing protein

  •  
  • PAMP

    pathogen-associated molecular pattern

  •  
  • T3SS

    type 3 secretion system.

1
Martinon
,
F.
,
K.
Burns
,
J.
Tschopp
.
2002
.
The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta.
Mol. Cell
10
:
417
426
.
2
Schroder
,
K.
,
J.
Tschopp
.
2010
.
The inflammasomes.
Cell
140
:
821
832
.
3
Latz
,
E.
,
T. S.
Xiao
,
A.
Stutz
.
2013
.
Activation and regulation of the inflammasomes.
Nat. Rev. Immunol.
13
:
397
411
.
4
de Zoete
,
M. R.
,
N. W.
Palm
,
S.
Zhu
,
R. A.
Flavell
.
2014
.
Inflammasomes.
Cold Spring Harb. Perspect. Biol.
6
: a016287.
5
Broz
,
P.
,
V. M.
Dixit
.
2016
.
Inflammasomes: mechanism of assembly, regulation and signalling.
Nat. Rev. Immunol.
16
:
407
420
.
6
Sharma
,
D.
,
T. D.
Kanneganti
.
2016
.
The cell biology of inflammasomes: mechanisms of inflammasome activation and regulation.
J. Cell Biol.
213
:
617
629
.
7
Mathur
,
A.
,
J. A.
Hayward
,
S. M.
Man
.
2018
.
Molecular mechanisms of inflammasome signaling.
J. Leukoc. Biol.
103
:
233
257
.
8
Hornung
,
V.
,
F.
Bauernfeind
,
A.
Halle
,
E. O.
Samstad
,
H.
Kono
,
K. L.
Rock
,
K. A.
Fitzgerald
,
E.
Latz
.
2008
.
Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization.
Nat. Immunol.
9
:
847
856
.
9
Wang
,
Y.
,
A. L.
Sedlacek
,
S.
Pawaria
,
H.
Xu
,
M. J.
Scott
,
R. J.
Binder
.
2018
.
Cutting edge: the heat shock protein gp96 activates inflammasome-signaling platforms in APCs.
J. Immunol.
201
:
2209
2214
.
10
Costa Franco
,
M. M.
,
F.
Marim
,
E. S.
Guimarães
,
N. R. G.
Assis
,
D. M.
Cerqueira
,
J.
Alves-Silva
,
J.
Harms
,
G.
Splitter
,
J.
Smith
,
T. D.
Kanneganti
, et al
.
2018
.
Brucella abortus triggers a cGAS-independent STING pathway to induce host protection that involves guanylate-binding proteins and inflammasome activation.
J. Immunol.
200
:
607
622
.
11
Swanson
,
K. V.
,
M.
Deng
,
J. P.
Ting
.
2019
.
The NLRP3 inflammasome: molecular activation and regulation to therapeutics.
Nat. Rev. Immunol.
19
:
477
489
.
12
Thornberry
,
N. A.
,
H. G.
Bull
,
J. R.
Calaycay
,
K. T.
Chapman
,
A. D.
Howard
,
M. J.
Kostura
,
D. K.
Miller
,
S. M.
Molineaux
,
J. R.
Weidner
,
J.
Aunins
, et al
.
1992
.
A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes.
Nature
356
:
768
774
.
13
Black
,
R. A.
,
S. R.
Kronheim
,
J. E.
Merriam
,
C. J.
March
,
T. P.
Hopp
.
1989
.
A pre-aspartate-specific protease from human leukocytes that cleaves pro-interleukin-1 beta.
J. Biol. Chem.
264
:
5323
5326
.
14
Kostura
,
M. J.
,
M. J.
Tocci
,
G.
Limjuco
,
J.
Chin
,
P.
Cameron
,
A. G.
Hillman
,
N. A.
Chartrain
,
J. A.
Schmidt
.
1989
.
Identification of a monocyte specific pre-interleukin 1 beta convertase activity.
Proc. Natl. Acad. Sci. USA
86
:
5227
5231
.
15
Cerretti
,
D. P.
,
C. J.
Kozlosky
,
B.
Mosley
,
N.
Nelson
,
K.
Van Ness
,
T. A.
Greenstreet
,
C. J.
March
,
S. R.
Kronheim
,
T.
Druck
,
L. A.
Cannizzaro
, et al
.
1992
.
Molecular cloning of the interleukin-1 beta converting enzyme.
Science
256
:
97
100
.
16
Gu
,
Y.
,
K.
Kuida
,
H.
Tsutsui
,
G.
Ku
,
K.
Hsiao
,
M. A.
Fleming
,
N.
Hayashi
,
K.
Higashino
,
H.
Okamura
,
K.
Nakanishi
, et al
.
1997
.
Activation of interferon-gamma inducing factor mediated by interleukin-1beta converting enzyme.
Science
275
:
206
209
.
17
Ghayur
,
T.
,
S.
Banerjee
,
M.
Hugunin
,
D.
Butler
,
L.
Herzog
,
A.
Carter
,
L.
Quintal
,
L.
Sekut
,
R.
Talanian
,
M.
Paskind
, et al
.
1997
.
Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production.
Nature
386
:
619
623
.
18
Sansonetti
,
P. J.
,
A.
Phalipon
,
J.
Arondel
,
K.
Thirumalai
,
S.
Banerjee
,
S.
Akira
,
K.
Takeda
,
A.
Zychlinsky
.
2000
.
Caspase-1 activation of IL-1beta and IL-18 are essential for Shigella flexneri-induced inflammation.
Immunity
12
:
581
590
.
19
Cookson
,
B. T.
,
M. A.
Brennan
.
2001
.
Pro-inflammatory programmed cell death.
Trends Microbiol.
9
:
113
114
.
20
Bergsbaken
,
T.
,
S. L.
Fink
,
B. T.
Cookson
.
2009
.
Pyroptosis: host cell death and inflammation.
Nat. Rev. Microbiol.
7
:
99
109
.
21
Miao
,
E. A.
,
J. V.
Rajan
,
A.
Aderem
.
2011
.
Caspase-1-induced pyroptotic cell death.
Immunol. Rev.
243
:
206
214
.
22
Zhu
,
Q.
,
M.
Zheng
,
A.
Balakrishnan
,
R.
Karki
,
T. D.
Kanneganti
.
2018
.
Gasdermin D promotes AIM2 inflammasome activation and is required for host protection against Francisella novicida.
J. Immunol.
201
:
3662
3668
.
23
Martinon
,
F.
,
V.
Pétrilli
,
A.
Mayor
,
A.
Tardivel
,
J.
Tschopp
.
2006
.
Gout-associated uric acid crystals activate the NALP3 inflammasome.
Nature
440
:
237
241
.
24
Doitsh
,
G.
,
N. L.
Galloway
,
X.
Geng
,
Z.
Yang
,
K. M.
Monroe
,
O.
Zepeda
,
P. W.
Hunt
,
H.
Hatano
,
S.
Sowinski
,
I.
Muñoz-Arias
,
W. C.
Greene
.
2014
.
Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. [Published erratum appears in 2017 Nature 544: 124.]
Nature
505
:
509
514
.
25
Arbore
,
G.
,
E. E.
West
,
R.
Spolski
,
A. A. B.
Robertson
,
A.
Klos
,
C.
Rheinheimer
,
P.
Dutow
,
T. M.
Woodruff
,
Z. X.
Yu
,
L. A.
O’Neill
, et al
.
2016
.
T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4+ T cells.
Science
352
: aad1210.
26
Seydoux
,
E.
,
H.
Liang
,
N.
Dubois Cauwelaert
,
M.
Archer
,
N. D.
Rintala
,
R.
Kramer
,
D.
Carter
,
C. B.
Fox
,
M. T.
Orr
.
2018
.
Effective combination adjuvants engage both TLR and inflammasome pathways to promote potent adaptive immune responses.
J. Immunol.
201
:
98
112
.
27
Poyet
,
J. L.
,
S. M.
Srinivasula
,
M.
Tnani
,
M.
Razmara
,
T.
Fernandes-Alnemri
,
E. S.
Alnemri
.
2001
.
Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1.
J. Biol. Chem.
276
:
28309
28313
.
28
Agostini
,
L.
,
F.
Martinon
,
K.
Burns
,
M. F.
McDermott
,
P. N.
Hawkins
,
J.
Tschopp
.
2004
.
NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder.
Immunity
20
:
319
325
.
29
Mariathasan
,
S.
,
K.
Newton
,
D. M.
Monack
,
D.
Vucic
,
D. M.
French
,
W. P.
Lee
,
M.
Roose-Girma
,
S.
Erickson
,
V. M.
Dixit
.
2004
.
Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf.
Nature
430
:
213
218
.
30
Roberts
,
T. L.
,
A.
Idris
,
J. A.
Dunn
,
G. M.
Kelly
,
C. M.
Burnton
,
S.
Hodgson
,
L. L.
Hardy
,
V.
Garceau
,
M. J.
Sweet
,
I. L.
Ross
, et al
.
2009
.
HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA.
Science
323
:
1057
1060
.
31
Hornung
,
V.
,
A.
Ablasser
,
M.
Charrel-Dennis
,
F.
Bauernfeind
,
G.
Horvath
,
D. R.
Caffrey
,
E.
Latz
,
K. A.
Fitzgerald
.
2009
.
AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC.
Nature
458
:
514
518
.
32
Fernandes-Alnemri
,
T.
,
J. W.
Yu
,
P.
Datta
,
J.
Wu
,
E. S.
Alnemri
.
2009
.
AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA.
Nature
458
:
509
513
.
33
Bürckstümmer
,
T.
,
C.
Baumann
,
S.
Blüml
,
E.
Dixit
,
G.
Dürnberger
,
H.
Jahn
,
M.
Planyavsky
,
M.
Bilban
,
J.
Colinge
,
K. L.
Bennett
,
G.
Superti-Furga
.
2009
.
An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome.
Nat. Immunol.
10
:
266
272
.
34
Gavrilin
,
M. A.
,
D. H.
Abdelaziz
,
M.
Mostafa
,
B. A.
Abdulrahman
,
J.
Grandhi
,
A.
Akhter
,
A.
Abu Khweek
,
D. F.
Aubert
,
M. A.
Valvano
,
M. D.
Wewers
,
A. O.
Amer
.
2012
.
Activation of the pyrin inflammasome by intracellular Burkholderia cenocepacia.
J. Immunol.
188
:
3469
3477
.
35
Grenier
,
J. M.
,
L.
Wang
,
G. A.
Manji
,
W. J.
Huang
,
A.
Al-Garawi
,
R.
Kelly
,
A.
Carlson
,
S.
Merriam
,
J. M.
Lora
,
M.
Briskin
, et al
.
2002
.
Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NF-kappaB and caspase-1.
FEBS Lett.
530
:
73
78
.
36
Khare
,
S.
,
A.
Dorfleutner
,
N. B.
Bryan
,
C.
Yun
,
A. D.
Radian
,
L.
de Almeida
,
Y.
Rojanasakul
,
C.
Stehlik
.
2012
.
An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages.
Immunity
36
:
464
476
.
37
Wang
,
L.
,
G. A.
Manji
,
J. M.
Grenier
,
A.
Al-Garawi
,
S.
Merriam
,
J. M.
Lora
,
B. J.
Geddes
,
M.
Briskin
,
P. S.
DiStefano
,
J.
Bertin
.
2002
.
PYPAF7, a novel PYRIN-containing Apaf1-like protein that regulates activation of NF-kappa B and caspase-1-dependent cytokine processing.
J. Biol. Chem.
277
:
29874
29880
.
38
Poeck
,
H.
,
M.
Bscheider
,
O.
Gross
,
K.
Finger
,
S.
Roth
,
M.
Rebsamen
,
N.
Hannesschläger
,
M.
Schlee
,
S.
Rothenfusser
,
W.
Barchet
, et al
.
2010
.
Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. [Published erratum appears in 2014 Nat. Immunol. 15: 109.]
Nat. Immunol.
11
:
63
69
.
39
Pothlichet
,
J.
,
I.
Meunier
,
B. K.
Davis
,
J. P.
Ting
,
E.
Skamene
,
V.
von Messling
,
S. M.
Vidal
.
2013
.
Type I IFN triggers RIG-I/TLR3/NLRP3-dependent inflammasome activation in influenza A virus infected cells.
PLoS Pathog.
9
: e1003256.
40
Kerur
,
N.
,
M. V.
Veettil
,
N.
Sharma-Walia
,
V.
Bottero
,
S.
Sadagopan
,
P.
Otageri
,
B.
Chandran
.
2011
.
IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection.
Cell Host Microbe
9
:
363
375
.
41
Monroe
,
K. M.
,
Z.
Yang
,
J. R.
Johnson
,
X.
Geng
,
G.
Doitsh
,
N. J.
Krogan
,
W. C.
Greene
.
2014
.
IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV.
Science
343
:
428
432
.
42
Boyden
,
E. D.
,
W. F.
Dietrich
.
2006
.
Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin.
Nat. Genet.
38
:
240
244
.
43
Ewald
,
S. E.
,
J.
Chavarria-Smith
,
J. C.
Boothroyd
.
2014
.
NLRP1 is an inflammasome sensor for Toxoplasma gondii.
Infect. Immun.
82
:
460
468
.
44
Neiman-Zenevich
,
J.
,
S.
Stuart
,
M.
Abdel-Nour
,
S. E.
Girardin
,
J.
Mogridge
.
2017
.
Listeria monocytogenes and Shigella flexneri activate the NLRP1B inflammasome.
Infect. Immun.
85
:
e00338
-
17
.
45
Faustin
,
B.
,
L.
Lartigue
,
J. M.
Bruey
,
F.
Luciano
,
E.
Sergienko
,
B.
Bailly-Maitre
,
N.
Volkmann
,
D.
Hanein
,
I.
Rouiller
,
J. C.
Reed
.
2007
.
Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation.
Mol. Cell
25
:
713
724
.
46
Zhong
,
F. L.
,
O.
Mamai
,
L.
Sborgi
,
L.
Boussofara
,
R.
Hopkins
,
K.
Robinson
,
I.
Szeverenyi
,
T.
Takeichi
,
R.
Balaji
,
A.
Lau
, et al
.
2016
.
Germline NLRP1 mutations cause skin inflammatory and cancer susceptibility syndromes via inflammasome activation.
Cell
167
:
187
202.e17
.
47
Franchi
,
L.
,
A.
Amer
,
M.
Body-Malapel
,
T. D.
Kanneganti
,
N.
Ozören
,
R.
Jagirdar
,
N.
Inohara
,
P.
Vandenabeele
,
J.
Bertin
,
A.
Coyle
, et al
.
2006
.
Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages.
Nat. Immunol.
7
:
576
582
.
48
Zhao
,
Y.
,
J.
Yang
,
J.
Shi
,
Y. N.
Gong
,
Q.
Lu
,
H.
Xu
,
L.
Liu
,
F.
Shao
.
2011
.
The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus.
Nature
477
:
596
600
.
49
Endrizzi
,
M. G.
,
V.
Hadinoto
,
J. D.
Growney
,
W.
Miller
,
W. F.
Dietrich
.
2000
.
Genomic sequence analysis of the mouse Naip gene array.
Genome Res.
10
:
1095
1102
.
50
Kofoed
,
E. M.
,
R. E.
Vance
.
2011
.
Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity.
Nature
477
:
592
595
.
51
Kortmann
,
J.
,
S. W.
Brubaker
,
D. M.
Monack
.
2015
.
Cutting edge: inflammasome activation in primary human macrophages is dependent on flagellin.
J. Immunol.
195
:
815
819
.
52
Qu
,
Y.
,
S.
Misaghi
,
A.
Izrael-Tomasevic
,
K.
Newton
,
L. L.
Gilmour
,
M.
Lamkanfi
,
S.
Louie
,
N.
Kayagaki
,
J.
Liu
,
L.
Kömüves
, et al
.
2012
.
Phosphorylation of NLRC4 is critical for inflammasome activation.
Nature
490
:
539
542
.
53
Muruve
,
D. A.
,
V.
Pétrilli
,
A. K.
Zaiss
,
L. R.
White
,
S. A.
Clark
,
P. J.
Ross
,
R. J.
Parks
,
J.
Tschopp
.
2008
.
The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response.
Nature
452
:
103
107
.
54
Jin
,
T.
,
A.
Perry
,
J.
Jiang
,
P.
Smith
,
J. A.
Curry
,
L.
Unterholzner
,
Z.
Jiang
,
G.
Horvath
,
V. A.
Rathinam
,
R. W.
Johnstone
, et al
.
2012
.
Structures of the HIN domain:DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor.
Immunity
36
:
561
571
.
55
Jin
,
T.
,
A.
Perry
,
P.
Smith
,
J.
Jiang
,
T. S.
Xiao
.
2013
.
Structure of the absent in melanoma 2 (AIM2) pyrin domain provides insights into the mechanisms of AIM2 autoinhibition and inflammasome assembly.
J. Biol. Chem.
288
:
13225
13235
.
56
Fernandes-Alnemri
,
T.
,
J. W.
Yu
,
C.
Juliana
,
L.
Solorzano
,
S.
Kang
,
J.
Wu
,
P.
Datta
,
M.
McCormick
,
L.
Huang
,
E.
McDermott
, et al
.
2010
.
The AIM2 inflammasome is critical for innate immunity to Francisella tularensis.
Nat. Immunol.
11
:
385
393
.
57
Rathinam
,
V. A.
,
Z.
Jiang
,
S. N.
Waggoner
,
S.
Sharma
,
L. E.
Cole
,
L.
Waggoner
,
S. K.
Vanaja
,
B. G.
Monks
,
S.
Ganesan
,
E.
Latz
, et al
.
2010
.
The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses.
Nat. Immunol.
11
:
395
402
.
58
Dombrowski
,
Y.
,
M.
Peric
,
S.
Koglin
,
C.
Kammerbauer
,
C.
Göss
,
D.
Anz
,
M.
Simanski
,
R.
Gläser
,
J.
Harder
,
V.
Hornung
, et al
.
2011
.
Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions.
Sci. Transl. Med.
3
: 82ra38.
59
Ponomareva
,
L.
,
H.
Liu
,
X.
Duan
,
E.
Dickerson
,
H.
Shen
,
R.
Panchanathan
,
D.
Choubey
.
2013
.
AIM2, an IFN-inducible cytosolic DNA sensor, in the development of benign prostate hyperplasia and prostate cancer.
Mol. Cancer Res.
11
:
1193
1202
.
60
Xu
,
H.
,
J.
Yang
,
W.
Gao
,
L.
Li
,
P.
Li
,
L.
Zhang
,
Y. N.
Gong
,
X.
Peng
,
J. J.
Xi
,
S.
Chen
, et al
.
2014
.
Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome.
Nature
513
:
237
241
.
61
Gao
,
W.
,
J.
Yang
,
W.
Liu
,
Y.
Wang
,
F.
Shao
.
2016
.
Site-specific phosphorylation and microtubule dynamics control Pyrin inflammasome activation.
Proc. Natl. Acad. Sci. USA
113
:
E4857
E4866
.
62
Park
,
Y. H.
,
G.
Wood
,
D. L.
Kastner
,
J. J.
Chae
.
2016
.
Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS.
Nat. Immunol.
17
:
914
921
.
63
Alimov
,
I.
,
S.
Menon
,
N.
Cochran
,
R.
Maher
,
Q.
Wang
,
J.
Alford
,
J. B.
Concannon
,
Z.
Yang
,
E.
Harrington
,
L.
Llamas
, et al
.
2019
.
Bile acid analogues are activators of pyrin inflammasome.
J. Biol. Chem.
294
:
3359
3366
.
64
Mariathasan
,
S.
,
D. S.
Weiss
,
K.
Newton
,
J.
McBride
,
K.
O’Rourke
,
M.
Roose-Girma
,
W. P.
Lee
,
Y.
Weinrauch
,
D. M.
Monack
,
V. M.
Dixit
.
2006
.
Cryopyrin activates the inflammasome in response to toxins and ATP.
Nature
440
:
228
232
.
65
Franchi
,
L.
,
T.
Eigenbrod
,
G.
Núñez
.
2009
.
Cutting edge: TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation.
J. Immunol.
183
:
792
796
.
66
Duewell
,
P.
,
H.
Kono
,
K. J.
Rayner
,
C. M.
Sirois
,
G.
Vladimer
,
F. G.
Bauernfeind
,
G. S.
Abela
,
L.
Franchi
,
G.
Nuñez
,
M.
Schnurr
, et al
.
2010
.
NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. [Published erratum appears in 2010 Nature 466: 652.]
Nature
464
:
1357
1361
.
67
Franchi
,
L.
,
T.
Eigenbrod
,
R.
Muñoz-Planillo
,
U.
Ozkurede
,
Y. G.
Kim
,
C.
Arindam
,
M.
Gale
Jr.
,
R. H.
Silverman
,
M.
Colonna
,
S.
Akira
,
G.
Núñez
.
2014
.
Cytosolic double-stranded RNA activates the NLRP3 inflammasome via MAVS-induced membrane permeabilization and K+ efflux.
J. Immunol.
193
:
4214
4222
.
68
Freeman
,
L.
,
H.
Guo
,
C. N.
David
,
W. J.
Brickey
,
S.
Jha
,
J. P.
Ting
.
2017
.
NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes.
J. Exp. Med.
214
:
1351
1370
.
69
Kool
,
M.
,
V.
Pétrilli
,
T.
De Smedt
,
A.
Rolaz
,
H.
Hammad
,
M.
van Nimwegen
,
I. M.
Bergen
,
R.
Castillo
,
B. N.
Lambrecht
,
J.
Tschopp
.
2008
.
Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome.
J. Immunol.
181
:
3755
3759
.
70
Goldberg
,
E. L.
,
J. L.
Asher
,
R. D.
Molony
,
A. C.
Shaw
,
C. J.
Zeiss
,
C.
Wang
,
L. A.
Morozova-Roche
,
R. I.
Herzog
,
A.
Iwasaki
,
V. D.
Dixit
.
2017
.
β-hydroxybutyrate deactivates neutrophil NLRP3 inflammasome to relieve gout flares.
Cell Rep.
18
:
2077
2087
.
71
Kummer
,
J. A.
,
R.
Broekhuizen
,
H.
Everett
,
L.
Agostini
,
L.
Kuijk
,
F.
Martinon
,
R.
van Bruggen
,
J.
Tschopp
.
2007
.
Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response.
J. Histochem. Cytochem.
55
:
443
452
.
72
Chow
,
M. T.
,
J.
Tschopp
,
A.
Möller
,
M. J.
Smyth
.
2012
.
NLRP3 promotes inflammation-induced skin cancer but is dispensable for asbestos-induced mesothelioma.
Immunol. Cell Biol.
90
:
983
986
.
73
Man
,
S. M.
2018
.
Inflammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis.
Nat. Rev. Gastroenterol. Hepatol.
15
:
721
737
.
74
Sutterwala
,
F. S.
,
S.
Haasken
,
S. L.
Cassel
.
2014
.
Mechanism of NLRP3 inflammasome activation.
Ann. N. Y. Acad. Sci.
1319
:
82
95
.
75
Elliott
,
E. I.
,
A. N.
Miller
,
B.
Banoth
,
S. S.
Iyer
,
A.
Stotland
,
J. P.
Weiss
,
R. A.
Gottlieb
,
F. S.
Sutterwala
,
S. L.
Cassel
.
2018
.
Cutting edge: mitochondrial assembly of the NLRP3 inflammasome complex is initiated at priming.
J. Immunol.
200
:
3047
3052
.
76
Bauernfeind
,
F. G.
,
G.
Horvath
,
A.
Stutz
,
E. S.
Alnemri
,
K.
MacDonald
,
D.
Speert
,
T.
Fernandes-Alnemri
,
J.
Wu
,
B. G.
Monks
,
K. A.
Fitzgerald
, et al
.
2009
.
Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression.
J. Immunol.
183
:
787
791
.
77
Pétrilli
,
V.
,
S.
Papin
,
C.
Dostert
,
A.
Mayor
,
F.
Martinon
,
J.
Tschopp
.
2007
.
Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration.
Cell Death Differ.
14
:
1583
1589
.
78
Gov
,
L.
,
C. A.
Schneider
,
T. S.
Lima
,
W.
Pandori
,
M. B.
Lodoen
.
2017
.
NLRP3 and potassium efflux drive rapid IL-1β release from primary human monocytes during Toxoplasma gondii infection.
J. Immunol.
199
:
2855
2864
.
79
Hornung
,
V.
,
F.
Bauernfeind
,
A.
Halle
,
E. O.
Samstad
,
H.
Kono
,
K. L.
Rock
,
K. A.
Fitzgerald
,
E.
Latz
.
2008
.
Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization.
Nat. Immunol.
9
:
847
856
.
80
Zhou
,
R.
,
A. S.
Yazdi
,
P.
Menu
,
J.
Tschopp
.
2011
.
A role for mitochondria in NLRP3 inflammasome activation. [Published erratum appears in 2011 Nature 475: 122.]
Nature
469
:
221
225
.
81
Murakami
,
T.
,
J.
Ockinger
,
J.
Yu
,
V.
Byles
,
A.
McColl
,
A. M.
Hofer
,
T.
Horng
.
2012
.
Critical role for calcium mobilization in activation of the NLRP3 inflammasome.
Proc. Natl. Acad. Sci. USA
109
:
11282
11287
.
82
Lee
,
G. S.
,
N.
Subramanian
,
A. I.
Kim
,
I.
Aksentijevich
,
R.
Goldbach-Mansky
,
D. B.
Sacks
,
R. N.
Germain
,
D. L.
Kastner
,
J. J.
Chae
.
2012
.
The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP.
Nature
492
:
123
127
.
83
Muñoz-Planillo
,
R.
,
P.
Kuffa
,
G.
Martínez-Colón
,
B. L.
Smith
,
T. M.
Rajendiran
,
G.
Núñez
.
2013
.
K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter.
Immunity
38
:
1142
1153
.
84
Groß
,
C. J.
,
R.
Mishra
,
K. S.
Schneider
,
G.
Médard
,
J.
Wettmarshausen
,
D. C.
Dittlein
,
H.
Shi
,
O.
Gorka
,
P. A.
Koenig
,
S.
Fromm
, et al
.
2016
.
K+ efflux-independent NLRP3 inflammasome activation by small molecules targeting mitochondria.
Immunity
45
:
761
773
.
85
Shi
,
J.
,
Y.
Zhao
,
Y.
Wang
,
W.
Gao
,
J.
Ding
,
P.
Li
,
L.
Hu
,
F.
Shao
.
2014
.
Inflammatory caspases are innate immune receptors for intracellular LPS.
Nature
514
:
187
192
.
86
Viganò
,
E.
,
C. E.
Diamond
,
R.
Spreafico
,
A.
Balachander
,
R. M.
Sobota
,
A.
Mortellaro
.
2015
.
Human caspase-4 and caspase-5 regulate the one-step non-canonical inflammasome activation in monocytes.
Nat. Commun.
6
:
8761
.
87
Kayagaki
,
N.
,
S.
Warming
,
M.
Lamkanfi
,
L.
Vande Walle
,
S.
Louie
,
J.
Dong
,
K.
Newton
,
Y.
Qu
,
J.
Liu
,
S.
Heldens
, et al
.
2011
.
Non-canonical inflammasome activation targets caspase-11.
Nature
479
:
117
121
.
88
Kayagaki
,
N.
,
M. T.
Wong
,
I. B.
Stowe
,
S. R.
Ramani
,
L. C.
Gonzalez
,
S.
Akashi-Takamura
,
K.
Miyake
,
J.
Zhang
,
W. P.
Lee
,
A.
Muszyński
, et al
.
2013
.
Noncanonical inflammasome activation by intracellular LPS independent of TLR4.
Science
341
:
1246
1249
.
89
Hagar
,
J. A.
,
D. A.
Powell
,
Y.
Aachoui
,
R. K.
Ernst
,
E. A.
Miao
.
2013
.
Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock.
Science
341
:
1250
1253
.
90
Lee
,
B. L.
,
I. B.
Stowe
,
A.
Gupta
,
O. S.
Kornfeld
,
M.
Roose-Girma
,
K.
Anderson
,
S.
Warming
,
J.
Zhang
,
W. P.
Lee
,
N.
Kayagaki
.
2018
.
Caspase-11 auto-proteolysis is crucial for noncanonical inflammasome activation.
J. Exp. Med.
215
:
2279
2288
.
91
Shi
,
J.
,
Y.
Zhao
,
K.
Wang
,
X.
Shi
,
Y.
Wang
,
H.
Huang
,
Y.
Zhuang
,
T.
Cai
,
F.
Wang
,
F.
Shao
.
2015
.
Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death.
Nature
526
:
660
665
.
92
Kayagaki
,
N.
,
I. B.
Stowe
,
B. L.
Lee
,
K.
O'Rourke
,
K.
Anderson
,
S.
Warming
,
T.
Cuellar
,
B.
Haley
,
M.
Roose-Girma
,
Q. T.
Phung
, et al
.
2015
.
Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling.
Nature
526
:
666
671
.
93
Strowig
,
T.
,
J.
Henao-Mejia
,
E.
Elinav
,
R.
Flavell
.
2012
.
Inflammasomes in health and disease.
Nature
481
:
278
286
.
94
Liu
,
L.
,
S.
Oza
,
D.
Hogan
,
J.
Perin
,
I.
Rudan
,
J. E.
Lawn
,
S.
Cousens
,
C.
Mathers
,
R. E.
Black
.
2015
.
Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: an updated systematic analysis.
Lancet
385
:
430
440
.
95
Manuck
,
T. A.
,
M. M.
Rice
,
J. L.
Bailit
,
W. A.
Grobman
,
U. M.
Reddy
,
R. J.
Wapner
,
J. M.
Thorp
,
S. N.
Caritis
,
M.
Prasad
,
A. T.
Tita
, et al
Eunice Kennedy Shriver National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network
.
2016
.
Preterm neonatal morbidity and mortality by gestational age: a contemporary cohort.
Am. J. Obstet. Gynecol.
215
:
103.e1
103.e14
.
96
Griffith
,
O. W.
,
A. R.
Chavan
,
S.
Protopapas
,
J.
Maziarz
,
R.
Romero
,
G. P.
Wagner
.
2017
.
Embryo implantation evolved from an ancestral inflammatory attachment reaction.
Proc. Natl. Acad. Sci. USA
114
:
E6566
E6575
.
97
Kelly
,
R. W.
1994
.
Pregnancy maintenance and parturition: the role of prostaglandin in manipulating the immune and inflammatory response.
Endocr. Rev.
15
:
684
706
.
98
Lindström
,
T. M.
,
P. R.
Bennett
.
2005
.
The role of nuclear factor kappa B in human labour.
Reproduction
130
:
569
581
.
99
Romero
,
R.
,
J.
Espinoza
,
L. F.
Gonçalves
,
J. P.
Kusanovic
,
L. A.
Friel
,
J. K.
Nien
.
2006
.
Inflammation in preterm and term labour and delivery.
Semin. Fetal Neonatal. Med.
11
:
317
326
.
100
Vora
,
S.
,
A.
Abbas
,
C. J.
Kim
,
T. L.
Summerfield
,
J. P.
Kusanovic
,
J. D.
Iams
,
R.
Romero
,
D. A.
Kniss
,
W. E.
Ackerman
IV
.
2010
.
Nuclear factor-kappa B localization and function within intrauterine tissues from term and preterm labor and cultured fetal membranes.
Reprod. Biol. Endocrinol.
8
:
8
.
101
Xie
,
F.
,
Y.
Hu
,
S. E.
Turvey
,
L. A.
Magee
,
R. M.
Brunham
,
K. C.
Choi
,
M.
Krajden
,
P. C.
Leung
,
D. M.
Money
,
D. M.
Patrick
, et al
.
2010
.
Toll-like receptors 2 and 4 and the cryopyrin inflammasome in normal pregnancy and pre-eclampsia.
BJOG
117
:
99
108
.
102
Maneta
,
E.
,
A. Y.
Warren
,
D. P.
Hay
,
R. N.
Khan
.
2015
.
Caspase-1-mediated cytokine release from gestational tissues, placental, and cord blood.
Front. Physiol.
6
:
186
.
103
Matias
,
M. L.
,
M.
Romão
,
I. C.
Weel
,
V. R.
Ribeiro
,
P. R.
Nunes
,
V. T.
Borges
,
J. P.
Araújo
Jr.
,
J. C.
Peraçoli
,
L.
de Oliveira
,
M. T.
Peraçoli
.
2015
.
Endogenous and uric acid-induced activation of NLRP3 inflammasome in pregnant women with preeclampsia.
PLoS One
10
: e0129095.
104
Pineles
,
B.
,
R.
Romero
,
D.
Montenegro
,
A.
Tarca
,
N.
Than
,
S.
Hassan
,
F.
Gotsch
,
S.
Draghici
,
J.
Espinoza
,
C.
Kim
.
2007
.
“The inflammasome” in human parturition.
Reprod. Sci.
14
:
59A
60A
.
105
Burton
,
G. J.
,
E.
Jauniaux
.
2015
.
What is the placenta?
Am. J. Obstet. Gynecol.
213
:
S6.e1
,
S6
S8
.
106
Yin
,
Y.
,
Y.
Yan
,
X.
Jiang
,
J.
Mai
,
N. C.
Chen
,
H.
Wang
,
X. F.
Yang
.
2009
.
Inflammasomes are differentially expressed in cardiovascular and other tissues.
Int. J. Immunopathol. Pharmacol.
22
:
311
322
.
107
Mulla
,
M. J.
,
K.
Myrtolli
,
J.
Potter
,
C.
Boeras
,
P. B.
Kavathas
,
A. K.
Sfakianaki
,
S.
Tadesse
,
E. R.
Norwitz
,
S.
Guller
,
V. M.
Abrahams
.
2011
.
Uric acid induces trophoblast IL-1β production via the inflammasome: implications for the pathogenesis of preeclampsia.
Am. J. Reprod. Immunol.
65
:
542
548
.
108
Pontillo
,
A.
,
M.
Girardelli
,
C.
Agostinis
,
E.
Masat
,
R.
Bulla
,
S.
Crovella
.
2013
.
Bacterial LPS differently modulates inflammasome gene expression and IL-1β secretion in trophoblast cells, decidual stromal cells, and decidual endothelial cells.
Reprod. Sci.
20
:
563
566
.
109
Tilburgs
,
T.
,
T. B.
Meissner
,
L. M. R.
Ferreira
,
A.
Mulder
,
K.
Musunuru
,
J.
Ye
,
J. L.
Strominger
.
2017
.
NLRP2 is a suppressor of NF-ƙB signaling and HLA-C expression in human trophoblasts†,‡.
Biol. Reprod.
96
:
831
842
.
110
Bryant
,
A. H.
,
R. J.
Bevan
,
S.
Spencer-Harty
,
L. M.
Scott
,
R. H.
Jones
,
C. A.
Thornton
.
2017
.
Expression and function of NOD-like receptors by human term gestation-associated tissues.
Placenta
58
:
25
32
.
111
Zhu
,
J.
,
M.
He
,
C.
Ma
,
F.
Peng
,
Y.
Su
,
L.
Huang
.
2018
.
Expression and clinical significance of NOD-like receptor protein 3 (NLRP3) and caspase-1 in fetal membrane and placental tissues of patients with premature rupture of membrane.
Med. Sci. Monit.
24
:
1560
1566
.
112
Tamura
,
K.
,
G.
Ishikawa
,
M.
Yoshie
,
W.
Ohneda
,
A.
Nakai
,
T.
Takeshita
,
E.
Tachikawa
.
2017
.
Glibenclamide inhibits NLRP3 inflammasome-mediated IL-1β secretion in human trophoblasts.
J. Pharmacol. Sci.
135
:
89
95
.
113
Stødle
,
G. S.
,
G. B.
Silva
,
L. H.
Tangerås
,
L. M.
Gierman
,
I.
Nervik
,
U. E.
Dahlberg
,
C.
Sun
,
M. H.
Aune
,
L. C. V.
Thomsen
,
L.
Bjørge
,
A. C.
Iversen
.
2018
.
Placental inflammation in pre-eclampsia by Nod-like receptor protein (NLRP)3 inflammasome activation in trophoblasts.
Clin. Exp. Immunol.
193
:
84
94
.
114
Corrêa-Silva
,
S.
,
A. P.
Alencar
,
J. B.
Moreli
,
A. U.
Borbely
,
L.
de S Lima
,
C.
Scavone
,
D. C.
Damasceno
,
M. V. C.
Rudge
,
E.
Bevilacqua
,
I. M. P.
Calderon
.
2018
.
Hyperglycemia induces inflammatory mediators in the human chorionic villous.
Cytokine
111
:
41
48
.
115
Kaneko
,
Y.
,
M.
Sano
,
K.
Seno
,
Y.
Oogaki
,
H.
Takahashi
,
A.
Ohkuchi
,
M.
Yokozawa
,
K.
Yamauchi
,
H.
Iwata
,
T.
Kuwayama
,
K.
Shirasuna
.
2019
.
Olive leaf extract (OleaVita) suppresses inflammatory cytokine production and NLRP3 inflammasomes in human placenta.
Nutrients
. DOI: 10.3390/nu11050970.
116
Bourne
,
G.
1962
.
The foetal membranes. A review of the anatomy of normal amnion and chorion and some aspects of their function.
Postgrad. Med. J.
38
:
193
201
.
117
Romero
,
R.
,
Y.
Xu
,
O.
Plazyo
,
P.
Chaemsaithong
,
T.
Chaiworapongsa
,
R.
Unkel
,
N. G.
Than
,
P. J.
Chiang
,
Z.
Dong
,
Z.
Xu
, et al
.
2018
.
A role for the inflammasome in spontaneous labor at term.
Am. J. Reprod. Immunol.
79
:
e12440
.
118
Gomez-Lopez
,
N.
,
R.
Romero
,
Y.
Xu
,
V.
Garcia-Flores
,
Y.
Leng
,
B.
Panaitescu
,
D.
Miller
,
V. M.
Abrahams
,
S. S.
Hassan
.
2017
.
Inflammasome assembly in the chorioamniotic membranes during spontaneous labor at term.
Am. J. Reprod. Immunol.
DOI: 10.1111/aji.12648.
119
Lim
,
R.
,
M.
Lappas
.
2018
.
NOD-like receptor pyrin domain-containing-3 (NLRP3) regulates inflammation-induced pro-labor mediators in human myometrial cells.
Am. J. Reprod. Immunol.
79
:
e12825
.
120
Brien
,
M. E.
,
C.
Duval
,
J.
Palacios
,
I.
Boufaied
,
A. A.
Hudon-Thibeault
,
M.
Nadeau-Vallée
,
C.
Vaillancourt
,
C. P.
Sibley
,
V. M.
Abrahams
,
R. L.
Jones
,
S.
Girard
.
2017
.
Uric acid crystals induce placental inflammation and alter trophoblast function via an IL-1-dependent pathway: implications for fetal growth restriction.
J. Immunol.
198
:
443
451
.
121
C Weel
,
I.
,
M.
Romão-Veiga
,
M. L.
Matias
,
E. G.
Fioratti
,
J. C.
Peraçoli
,
V. T.
Borges
,
J. P.
Araujo
Jr.
,
M. T.
Peraçoli
.
2017
.
Increased expression of NLRP3 inflammasome in placentas from pregnant women with severe preeclampsia.
J. Reprod. Immunol.
123
:
40
47
.
122
Lappas
,
M.
2014
.
Caspase-1 activation is increased with human labour in foetal membranes and myometrium and mediates infection-induced interleukin-1β secretion.
Am. J. Reprod. Immunol.
71
:
189
201
.
123
Brickle
,
A.
,
H. T.
Tran
,
R.
Lim
,
S.
Liong
,
M.
Lappas
.
2015
.
Autophagy, which is decreased in labouring fetal membranes, regulates IL-1β production via the inflammasome.
Placenta
36
:
1393
1404
.
124
Haddad
,
R.
,
G.
Tromp
,
H.
Kuivaniemi
,
T.
Chaiworapongsa
,
Y. M.
Kim
,
M.
Mazor
,
R.
Romero
.
2006
.
Human spontaneous labor without histologic chorioamnionitis is characterized by an acute inflammation gene expression signature.
Am. J. Obstet. Gynecol.
195
:
394.e1
394.e24
.
125
Romero
,
R.
,
J.
Nores
,
M.
Mazor
,
W.
Sepulveda
,
E.
Oyarzun
,
M.
Parra
,
A.
Insunza
,
F.
Montiel
,
E.
Behnke
,
G. H.
Cassell
.
1993
.
Microbial invasion of the amniotic cavity during term labor. Prevalence and clinical significance.
J. Reprod. Med.
38
:
543
548
.
126
Romero
,
R.
,
D. T.
Brody
,
E.
Oyarzun
,
M.
Mazor
,
Y. K.
Wu
,
J. C.
Hobbins
,
S. K.
Durum
.
1989
.
Infection and labor. III. Interleukin-1: a signal for the onset of parturition.
Am. J. Obstet. Gynecol.
160
:
1117
1123
.
127
Romero
,
R.
,
S. T.
Parvizi
,
E.
Oyarzun
,
M.
Mazor
,
Y. K.
Wu
,
C.
Avila
,
A. P.
Athanassiadis
,
M. D.
Mitchell
.
1990
.
Amniotic fluid interleukin-1 in spontaneous labor at term.
J. Reprod. Med.
35
:
235
238
.
128
Romero
,
R.
,
M.
Mazor
,
F.
Brandt
,
W.
Sepulveda
,
C.
Avila
,
D. B.
Cotton
,
C. A.
Dinarello
.
1992
.
Interleukin-1 alpha and interleukin-1 beta in preterm and term human parturition.
Am. J. Reprod. Immunol.
27
:
117
123
.
129
Romero
,
R.
,
M.
Mazor
,
W.
Sepulveda
,
C.
Avila
,
D.
Copeland
,
J.
Williams
.
1992
.
Tumor necrosis factor in preterm and term labor.
Am. J. Obstet. Gynecol.
166
:
1576
1587
.
130
Romero
,
R.
,
W.
Sepulveda
,
M.
Mazor
,
F.
Brandt
,
D. B.
Cotton
,
C. A.
Dinarello
,
M. D.
Mitchell
.
1992
.
The natural interleukin-1 receptor antagonist in term and preterm parturition.
Am. J. Obstet. Gynecol.
167
:
863
872
.
131
Saito
,
S.
,
T.
Kasahara
,
Y.
Kato
,
Y.
Ishihara
,
M.
Ichijo
.
1993
.
Elevation of amniotic fluid interleukin 6 (IL-6), IL-8 and granulocyte colony stimulating factor (G-CSF) in term and preterm parturition.
Cytokine
5
:
81
88
.
132
Romero
,
R.
,
R.
Gomez
,
M.
Galasso
,
M.
Mazor
,
S. M.
Berry
,
R. A.
Quintero
,
D. B.
Cotton
.
1994
.
The natural interleukin-1 receptor antagonist in the fetal, maternal, and amniotic fluid compartments: the effect of gestational age, fetal gender, and intrauterine infection.
Am. J. Obstet. Gynecol.
171
:
912
921
.
133
Andrews
,
W. W.
,
J. C.
Hauth
,
R. L.
Goldenberg
,
R.
Gomez
,
R.
Romero
,
G. H.
Cassell
.
1995
.
Amniotic fluid interleukin-6: correlation with upper genital tract microbial colonization and gestational age in women delivered after spontaneous labor versus indicated delivery.
Am. J. Obstet. Gynecol.
173
:
606
612
.
134
Maymon
,
E.
,
F.
Ghezzi
,
S. S.
Edwin
,
M.
Mazor
,
B. H.
Yoon
,
R.
Gomez
,
R.
Romero
.
1999
.
The tumor necrosis factor alpha and its soluble receptor profile in term and preterm parturition.
Am. J. Obstet. Gynecol.
181
:
1142
1148
.
135
Keelan
,
J. A.
,
M.
Blumenstein
,
R. J.
Helliwell
,
T. A.
Sato
,
K. W.
Marvin
,
M. D.
Mitchell
.
2003
.
Cytokines, prostaglandins and parturition--a review.
Placenta
24
(
Suppl. A
):
S33
S46
.
136
Romero
,
R.
,
M.
Ceska
,
C.
Avila
,
M.
Mazor
,
E.
Behnke
,
I.
Lindley
.
1991
.
Neutrophil attractant/activating peptide-1/interleukin-8 in term and preterm parturition.
Am. J. Obstet. Gynecol.
165
:
813
820
.
137
Romero
,
R.
,
R.
Gomez
,
M.
Galasso
,
H.
Munoz
,
L.
Acosta
,
B. H.
Yoon
,
D.
Svinarich
,
D. B.
Cotton
.
1994
.
Macrophage inflammatory protein-1 alpha in term and preterm parturition: effect of microbial invasion of the amniotic cavity.
Am. J. Reprod. Immunol.
32
:
108
113
.
138
Dudley
,
D. J.
,
C.
Hunter
,
M. D.
Mitchell
,
M. W.
Varner
.
1996
.
Elevations of amniotic fluid macrophage inflammatory protein-1 alpha concentrations in women during term and preterm labor.
Obstet. Gynecol.
87
:
94
98
.
139
Athayde
,
N.
,
R.
Romero
,
E.
Maymon
,
R.
Gomez
,
P.
Pacora
,
H.
Araneda
,
B. H.
Yoon
.
1999
.
A role for the novel cytokine RANTES in pregnancy and parturition.
Am. J. Obstet. Gynecol.
181
:
989
994
.
140
Esplin
,
M. S.
,
R.
Romero
,
T.
Chaiworapongsa
,
Y. M.
Kim
,
S.
Edwin
,
R.
Gomez
,
R.
Gonzalez
,
E. Y.
Adashi
.
2003
.
Amniotic fluid levels of immunoreactive monocyte chemotactic protein-1 increase during term parturition.
J. Matern. Fetal Neonatal Med.
14
:
51
56
.
141
Unal
,
E. R.
,
J. T.
Cierny
,
C.
Roedner
,
R.
Newman
,
L.
Goetzl
.
2011
.
Maternal inflammation in spontaneous term labor.
Am. J. Obstet. Gynecol.
204
:
223.e1
223.e5
.
142
Cierny
,
J. T.
,
E. R.
Unal
,
P.
Flood
,
K. Y.
Rhee
,
A.
Praktish
,
T. H.
Olson
,
L.
Goetzl
.
2014
.
Maternal inflammatory markers and term labor performance.
Am. J. Obstet. Gynecol.
210
:
447.e1
447.e6
.
143
Taniguchi
,
T.
,
N.
Matsuzaki
,
T.
Kameda
,
K.
Shimoya
,
T.
Jo
,
F.
Saji
,
O.
Tanizawa
.
1991
.
The enhanced production of placental interleukin-1 during labor and intrauterine infection.
Am. J. Obstet. Gynecol.
165
:
131
137
.
144
Ammälä
,
M.
,
T.
Nyman
,
A.
Salmi
,
E. M.
Rutanen
.
1997
.
The interleukin-1 system in gestational tissues at term: effect of labour.
Placenta
18
:
717
723
.
145
Keelan
,
J. A.
,
K. W.
Marvin
,
T. A.
Sato
,
M.
Coleman
,
L. M.
McCowan
,
M. D.
Mitchell
.
1999
.
Cytokine abundance in placental tissues: evidence of inflammatory activation in gestational membranes with term and preterm parturition.
Am. J. Obstet. Gynecol.
181
:
1530
1536
.
146
Fidel
,
P. L.
 Jr.
,
R.
Romero
,
M.
Ramirez
,
J.
Cutright
,
S. S.
Edwin
,
S.
LaMarche
,
D. B.
Cotton
,
M. D.
Mitchell
.
1994
.
Interleukin-1 receptor antagonist (IL-1ra) production by human amnion, chorion, and decidua.
Am. J. Reprod. Immunol.
32
:
1
7
.
147
Young
,
A.
,
A. J.
Thomson
,
M.
Ledingham
,
F.
Jordan
,
I. A.
Greer
,
J. E.
Norman
.
2002
.
Immunolocalization of proinflammatory cytokines in myometrium, cervix, and fetal membranes during human parturition at term.
Biol. Reprod.
66
:
445
449
.
148
Lonergan
,
M.
,
D.
Aponso
,
K. W.
Marvin
,
R. J.
Helliwell
,
T. A.
Sato
,
M. D.
Mitchell
,
T.
Chaiwaropongsa
,
R.
Romero
,
J. A.
Keelan
.
2003
.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), TRAIL receptors, and the soluble receptor osteoprotegerin in human gestational membranes and amniotic fluid during pregnancy and labor at term and preterm.
J. Clin. Endocrinol. Metab.
88
:
3835
3844
.
149
Osman
,
I.
,
A.
Young
,
M. A.
Ledingham
,
A. J.
Thomson
,
F.
Jordan
,
I. A.
Greer
,
J. E.
Norman
.
2003
.
Leukocyte density and pro-inflammatory cytokine expression in human fetal membranes, decidua, cervix and myometrium before and during labour at term.
Mol. Hum. Reprod.
9
:
41
45
.
150
Nhan-Chang
,
C. L.
,
R.
Romero
,
A. L.
Tarca
,
P.
Mittal
,
J. P.
Kusanovic
,
O.
Erez
,
S.
Mazaki-Tovi
,
T.
Chaiworapongsa
,
J.
Hotra
,
N. G.
Than
, et al
.
2010
.
Characterization of the transcriptome of chorioamniotic membranes at the site of rupture in spontaneous labor at term.
Am. J. Obstet. Gynecol.
202
:
462.e1
462.e41
.
151
Esplin
,
M. S.
,
M. R.
Peltier
,
S.
Hamblin
,
S.
Smith
,
M. B.
Fausett
,
G. A.
Dildy
,
D. W.
Branch
,
R. M.
Silver
,
E. Y.
Adashi
.
2005
.
Monocyte chemotactic protein-1 expression is increased in human gestational tissues during term and preterm labor.
Placenta
26
:
661
671
.
152
Bollapragada
,
S.
,
R.
Youssef
,
F.
Jordan
,
I.
Greer
,
J.
Norman
,
S.
Nelson
.
2009
.
Term labor is associated with a core inflammatory response in human fetal membranes, myometrium, and cervix. [Published erratum appears in 2009 Am. J. Obstet. Gynecol. 201: 214.]
Am. J. Obstet. Gynecol.
200
:
104.e1
104.e11
.
153
Stephen
,
G. L.
,
S.
Lui
,
S. A.
Hamilton
,
C. L.
Tower
,
L. K.
Harris
,
A.
Stevens
,
R. L.
Jones
.
2015
.
Transcriptomic profiling of human choriodecidua during term labor: inflammation as a key driver of labor.
Am. J. Reprod. Immunol.
73
:
36
55
.
154
Mittal
,
P.
,
R.
Romero
,
A. L.
Tarca
,
J.
Gonzalez
,
S.
Draghici
,
Y.
Xu
,
Z.
Dong
,
C. L.
Nhan-Chang
,
T.
Chaiworapongsa
,
S.
Lye
, et al
.
2010
.
Characterization of the myometrial transcriptome and biological pathways of spontaneous human labor at term.
J. Perinat. Med.
38
:
617
643
.
155
Hassan
,
S. S.
,
R.
Romero
,
R.
Haddad
,
I.
Hendler
,
N.
Khalek
,
G.
Tromp
,
M. P.
Diamond
,
Y.
Sorokin
,
J.
Malone
Jr
.
2006
.
The transcriptome of the uterine cervix before and after spontaneous term parturition.
Am. J. Obstet. Gynecol.
195
:
778
786
.
156
Hassan
,
S. S.
,
R.
Romero
,
A. L.
Tarca
,
C. L.
Nhan-Chang
,
E.
Vaisbuch
,
O.
Erez
,
P.
Mittal
,
J. P.
Kusanovic
,
S.
Mazaki-Tovi
,
L.
Yeo
, et al
.
2009
.
The transcriptome of cervical ripening in human pregnancy before the onset of labor at term: identification of novel molecular functions involved in this process.
J. Matern. Fetal Neonatal Med.
22
:
1183
1193
.
157
Sindram-Trujillo
,
A. P.
,
S. A.
Scherjon
,
P. P.
van Hulst-van Miert
,
H. H.
Kanhai
,
D. L.
Roelen
,
F. H.
Claas
.
2004
.
Comparison of decidual leukocytes following spontaneous vaginal delivery and elective cesarean section in uncomplicated human term pregnancy.
J. Reprod. Immunol.
62
:
125
137
.
158
Osman
,
I.
,
A.
Young
,
F.
Jordan
,
I. A.
Greer
,
J. E.
Norman
.
2006
.
Leukocyte density and proinflammatory mediator expression in regional human fetal membranes and decidua before and during labor at term.
J. Soc. Gynecol. Investig.
13
:
97
103
.
159
Gomez-Lopez
,
N.
,
G.
Estrada-Gutierrez
,
L.
Jimenez-Zamudio
,
R.
Vega-Sanchez
,
F.
Vadillo-Ortega
.
2009
.
Fetal membranes exhibit selective leukocyte chemotaxic activity during human labor.
J. Reprod. Immunol.
80
:
122
131
.
160
Gomez-Lopez
,
N.
,
L.
Vadillo-Perez
,
A.
Hernandez-Carbajal
,
M.
Godines-Enriquez
,
D. M.
Olson
,
F.
Vadillo-Ortega
.
2011
.
Specific inflammatory microenvironments in the zones of the fetal membranes at term delivery.
Am. J. Obstet. Gynecol.
205
:
235.e15
235.e24
.
161
Gomez-Lopez
,
N.
,
L.
Vadillo-Perez
,
S.
Nessim
,
D. M.
Olson
,
F.
Vadillo-Ortega
.
2011
.
Choriodecidua and amnion exhibit selective leukocyte chemotaxis during term human labor.
Am. J. Obstet. Gynecol.
204
:
364.e9
364.e16
.
162
Gomez-Lopez
,
N.
,
R.
Vega-Sanchez
,
M.
Castillo-Castrejon
,
R.
Romero
,
K.
Cubeiro-Arreola
,
F.
Vadillo-Ortega
.
2013
.
Evidence for a role for the adaptive immune response in human term parturition.
Am. J. Reprod. Immunol.
69
:
212
230
.
163
Gomez-Lopez
,
N.
,
D.
StLouis
,
M. A.
Lehr
,
E. N.
Sanchez-Rodriguez
,
M.
Arenas-Hernandez
.
2014
.
Immune cells in term and preterm labor.
Cell. Mol. Immunol.
11
:
571
581
.
164
St Louis
,
D.
,
R.
Romero
,
O.
Plazyo
,
M.
Arenas-Hernandez
,
B.
Panaitescu
,
Y.
Xu
,
T.
Milovic
,
Z.
Xu
,
G.
Bhatti
,
Q. S.
Mi
, et al
.
2016
.
Invariant NKT cell activation induces late preterm birth that is attenuated by rosiglitazone.
J. Immunol.
196
:
1044
1059
.
165
Xu
,
Y.
,
R.
Romero
,
D.
Miller
,
L.
Kadam
,
T. N.
Mial
,
O.
Plazyo
,
V.
Garcia-Flores
,
S. S.
Hassan
,
Z.
Xu
,
A. L.
Tarca
, et al
.
2016
.
An M1-like macrophage polarization in decidual tissue during spontaneous preterm labor that is attenuated by rosiglitazone treatment.
J. Immunol.
196
:
2476
2491
.
166
Arenas-Hernandez
,
M.
,
R.
Romero
,
Y.
Xu
,
B.
Panaitescu
,
V.
Garcia-Flores
,
D.
Miller
,
H.
Ahn
,
B.
Done
,
S. S.
Hassan
,
C. D.
Hsu
, et al
.
2019
.
Effector and activated T cells induce preterm labor and birth that is prevented by treatment with progesterone.
J. Immunol.
202
:
2585
2608
.
167
Leng
,
Y.
,
R.
Romero
,
Y.
Xu
,
J.
Galaz
,
R.
Slutsky
,
M.
Arenas-Hernandez
,
V.
Garcia-Flores
,
K.
Motomura
,
S. S.
Hassan
,
A.
Reboldi
,
N.
Gomez-Lopez
.
2019
.
Are B cells altered in the decidua of women with preterm or term labor?
Am. J. Reprod. Immunol.
81
:
e13102
.
168
Slutsky
,
R.
,
R.
Romero
,
Y.
Xu
,
J.
Galaz
,
D.
Miller
,
B.
Done
,
A. L.
Tarca
,
S.
Gregor
,
S. S.
Hassan
,
Y.
Leng
,
N.
Gomez-Lopez
.
2019
.
Exhausted and senescent T cells at the maternal-fetal interface in preterm and term labor.
J. Immunol. Res.
2019
: 3128010.
169
Mackler
,
A. M.
,
G.
Iezza
,
M. R.
Akin
,
P.
McMillan
,
S. M.
Yellon
.
1999
.
Macrophage trafficking in the uterus and cervix precedes parturition in the mouse.
Biol. Reprod.
61
:
879
883
.
170
Thomson
,
A. J.
,
J. F.
Telfer
,
A.
Young
,
S.
Campbell
,
C. J.
Stewart
,
I. T.
Cameron
,
I. A.
Greer
,
J. E.
Norman
.
1999
.
Leukocytes infiltrate the myometrium during human parturition: further evidence that labour is an inflammatory process.
Hum. Reprod.
14
:
229
236
.
171
Shynlova
,
O.
,
P.
Tsui
,
A.
Dorogin
,
S. J.
Lye
.
2008
.
Monocyte chemoattractant protein-1 (CCL-2) integrates mechanical and endocrine signals that mediate term and preterm labor.
J. Immunol.
181
:
1470
1479
.
172
Hamilton
,
S.
,
Y.
Oomomian
,
G.
Stephen
,
O.
Shynlova
,
C. L.
Tower
,
A.
Garrod
,
S. J.
Lye
,
R. L.
Jones
.
2012
.
Macrophages infiltrate the human and rat decidua during term and preterm labor: evidence that decidual inflammation precedes labor.
Biol. Reprod.
86
:
39
.
173
Shynlova
,
O.
,
T.
Nedd-Roderique
,
Y.
Li
,
A.
Dorogin
,
T.
Nguyen
,
S. J.
Lye
.
2013
.
Infiltration of myeloid cells into decidua is a critical early event in the labour cascade and post-partum uterine remodelling.
J. Cell. Mol. Med.
17
:
311
324
.
174
Arenas-Hernandez
,
M.
,
R.
Romero
,
D.
St Louis
,
S. S.
Hassan
,
E. B.
Kaye
,
N.
Gomez-Lopez
.
2016
.
An imbalance between innate and adaptive immune cells at the maternal-fetal interface occurs prior to endotoxin-induced preterm birth.
Cell. Mol. Immunol.
13
:
462
473
.
175
Liggins
,
G.
1981
.
Cervical ripening as an inflammatory reaction
. In
The Cervix in Pregnancy and Labor: Clinical and Biochemical Investigations.
E.
Ellwood
,
A.
Anderson
, eds.
Churchill Livingstone
,
Edinburgh
, p.
1
9
.
176
Sakamoto
,
Y.
,
P.
Moran
,
J. N.
Bulmer
,
R. F.
Searle
,
S. C.
Robson
.
2005
.
Macrophages and not granulocytes are involved in cervical ripening.
J. Reprod. Immunol.
66
:
161
173
.
177
Timmons
,
B. C.
,
M. S.
Mahendroo
.
2006
.
Timing of neutrophil activation and expression of proinflammatory markers do not support a role for neutrophils in cervical ripening in the mouse.
Biol. Reprod.
74
:
236
245
.
178
Yellon
,
S. M.
,
C. A.
Ebner
,
Y.
Sugimoto
.
2008
.
Parturition and recruitment of macrophages in cervix of mice lacking the prostaglandin F receptor.
Biol. Reprod.
78
:
438
444
.
179
Timmons
,
B. C.
,
A. M.
Fairhurst
,
M. S.
Mahendroo
.
2009
.
Temporal changes in myeloid cells in the cervix during pregnancy and parturition.
J. Immunol.
182
:
2700
2707
.
180
Clyde
,
L. A.
,
T. J.
Lechuga
,
C. A.
Ebner
,
A. E.
Burns
,
M. A.
Kirby
,
S. M.
Yellon
.
2011
.
Transection of the pelvic or vagus nerve forestalls ripening of the cervix and delays birth in rats.
Biol. Reprod.
84
:
587
594
.
181
Yellon
,
S. M.
,
B. T.
Oshiro
,
T. Y.
Chhaya
,
T. J.
Lechuga
,
R. M.
Dias
,
A. E.
Burns
,
L.
Force
,
E. M.
Apostolakis
.
2011
.
Remodeling of the cervix and parturition in mice lacking the progesterone receptor B isoform.
Biol. Reprod.
85
:
498
502
.
182
Myers
,
D. A.
2012
.
The recruitment and activation of leukocytes into the immune cervix: further support that cervical remodeling involves an immune and inflammatory mechanism.
Biol. Reprod.
87
:
107
.
183
Payne
,
K. J.
,
L. A.
Clyde
,
A. J.
Weldon
,
T. A.
Milford
,
S. M.
Yellon
.
2012
.
Residency and activation of myeloid cells during remodeling of the prepartum murine cervix.
Biol. Reprod.
87
:
106
.
184
Gotsch
,
F.
,
R.
Romero
,
T.
Chaiworapongsa
,
O.
Erez
,
E.
Vaisbuch
,
J.
Espinoza
,
J. P.
Kusanovic
,
P.
Mittal
,
S.
Mazaki-Tovi
,
C. J.
Kim
, et al
.
2008
.
Evidence of the involvement of caspase-1 under physiologic and pathologic cellular stress during human pregnancy: a link between the inflammasome and parturition.
J. Matern. Fetal Neonatal Med.
21
:
605
616
.
185
Davis
,
L. E.
,
L. C.
McLaren
,
J. A.
Stewart
,
C. G.
James
,
M. D.
Levine
,
B. J.
Skipper
.
1983
.
Immunological and microbiological studies of midtrimester amniotic fluid.
Gynecol. Obstet. Invest.
16
:
261
268
.
186
Schmidt
,
W.
1992
.
The amniotic fluid compartment: the fetal habitat.
Adv. Anat. Embryol. Cell Biol.
127
:
1
100
.
187
Gomez-Lopez
,
N.
,
R.
Romero
,
Y.
Xu
,
D.
Miller
,
Y.
Leng
,
B.
Panaitescu
,
P.
Silva
,
J.
Faro
,
A.
Alhousseini
,
N.
Gill
,
S. S.
Hassan
,
C. D.
Hsu
.
2018
.
The immunophenotype of amniotic fluid leukocytes in normal and complicated pregnancies.
Am. J. Reprod. Immunol.
79
:
e12827
.
188
Pacora
,
P.
,
R.
Romero
,
E.
Maymon
,
M. T.
Gervasi
,
R.
Gomez
,
S. S.
Edwin
,
B. H.
Yoon
.
2000
.
Participation of the novel cytokine interleukin 18 in the host response to intra-amniotic infection.
Am. J. Obstet. Gynecol.
183
:
1138
1143
.
189
Panaitescu
,
B.
,
R.
Romero
,
N.
Gomez-Lopez
,
Y.
Xu
,
Y.
Leng
,
E.
Maymon
,
P.
Pacora
,
O.
Erez
,
L.
Yeo
,
S. S.
Hassan
,
C. D.
Hsu
.
2019
.
In vivo evidence of inflammasome activation during spontaneous labor at term.
J. Matern. Fetal Neonatal Med.
32
:
1978
1991
.
190
Gomez-Lopez
,
N.
,
R.
Romero
,
B.
Panaitescu
,
D.
Miller
,
C.
Zou
,
D. W.
Gudicha
,
A. L.
Tarca
,
R.
Para
,
P.
Pacora
,
S. S.
Hassan
,
C. D.
Hsu
.
2019
.
Gasdermin D: in vivo evidence of pyroptosis in spontaneous labor at term.
J. Matern. Fetal Neonatal Med.
DOI: 10.1080/14767058.2019.1610740.
191
Stutz
,
A.
,
G. L.
Horvath
,
B. G.
Monks
,
E.
Latz
.
2013
.
ASC speck formation as a readout for inflammasome activation.
Methods Mol. Biol.
1040
:
91
101
.
192
Coll
,
R. C.
,
A. A.
Robertson
,
J. J.
Chae
,
S. C.
Higgins
,
R.
Muñoz-Planillo
,
M. C.
Inserra
,
I.
Vetter
,
L. S.
Dungan
,
B. G.
Monks
,
A.
Stutz
, et al
.
2015
.
A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases.
Nat. Med.
21
:
248
255
.
193
Gomez-Lopez
,
N.
,
R.
Romero
,
V.
Garcia-Flores
,
Y.
Leng
,
D.
Miller
,
S. S.
Hassan
,
C. D.
Hsu
,
B.
Panaitescu
.
2019
.
Inhibition of the NLRP3 inflammasome can prevent sterile intra-amniotic inflammation, preterm labor/birth, and adverse neonatal outcomes.
Biol. Reprod.
100
:
1306
1318
.
194
Seong
,
H. S.
,
S. E.
Lee
,
J. H.
Kang
,
R.
Romero
,
B. H.
Yoon
.
2008
.
The frequency of microbial invasion of the amniotic cavity and histologic chorioamnionitis in women at term with intact membranes in the presence or absence of labor.
Am. J. Obstet. Gynecol.
199
:
375.e1
375.e5
.
195
Romero
,
R.
,
J.
Miranda
,
J. P.
Kusanovic
,
T.
Chaiworapongsa
,
P.
Chaemsaithong
,
A.
Martinez
,
F.
Gotsch
,
Z.
Dong
,
A. I.
Ahmed
,
M.
Shaman
, et al
.
2015
.
Clinical chorioamnionitis at term I: microbiology of the amniotic cavity using cultivation and molecular techniques.
J. Perinat. Med.
43
:
19
36
.
196
Kim
,
C. J.
,
R.
Romero
,
P.
Chaemsaithong
,
N.
Chaiyasit
,
B. H.
Yoon
,
Y. M.
Kim
.
2015
.
Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance.
Am. J. Obstet. Gynecol.
213
(
Suppl.
):
S29
S52
.
197
Halgunset
,
J.
,
H.
Johnsen
,
A. M.
Kjøllesdal
,
E.
Qvigstad
,
T.
Espevik
,
R.
Austgulen
.
1994
.
Cytokine levels in amniotic fluid and inflammatory changes in the placenta from normal deliveries at term.
Eur. J. Obstet. Gynecol. Reprod. Biol.
56
:
153
160
.
198
Yoon
,
B. H.
,
J. K.
Jun
,
R.
Romero
,
K. H.
Park
,
R.
Gomez
,
J. H.
Choi
,
I. O.
Kim
.
1997
.
Amniotic fluid inflammatory cytokines (interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha), neonatal brain white matter lesions, and cerebral palsy.
Am. J. Obstet. Gynecol.
177
:
19
26
.
199
Gomez-Lopez
,
N.
,
R.
Romero
,
Y.
Xu
,
O.
Plazyo
,
R.
Unkel
,
N. G.
Than
,
P.
Chaemsaithong
,
T.
Chaiworapongsa
,
Z.
Dong
,
A. L.
Tarca
, et al
.
2017
.
A role for the inflammasome in spontaneous labor at term with acute histologic chorioamnionitis.
Reprod. Sci.
24
:
934
953
.
200
Gomez-Lopez
,
N.
,
R.
Romero
,
E.
Maymon
,
J. P.
Kusanovic
,
B.
Panaitescu
,
D.
Miller
,
P.
Pacora
,
A. L.
Tarca
,
K.
Motomura
,
O.
Erez
, et al
.
2019
.
Clinical chorioamnionitis at term IX: in vivo evidence of intra-amniotic inflammasome activation.
J. Perinat. Med.
47
:
276
287
.
201
Cross
,
S. N.
,
J. A.
Potter
,
P.
Aldo
,
J. Y.
Kwon
,
M.
Pitruzzello
,
M.
Tong
,
S.
Guller
,
C. V.
Rothlin
,
G.
Mor
,
V. M.
Abrahams
.
2017
.
Viral infection sensitizes human fetal membranes to bacterial lipopolysaccharide by MERTK inhibition and inflammasome activation.
J. Immunol.
199
:
2885
2895
.
202
Romero
,
R.
,
S. K.
Dey
,
S. J.
Fisher
.
2014
.
Preterm labor: one syndrome, many causes.
Science
345
:
760
765
.
203
Blencowe
,
H.
,
S.
Cousens
,
M. Z.
Oestergaard
,
D.
Chou
,
A. B.
Moller
,
R.
Narwal
,
A.
Adler
,
C.
Vera Garcia
,
S.
Rohde
,
L.
Say
,
J. E.
Lawn
.
2012
.
National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications.
Lancet
379
:
2162
2172
.
204
Chawanpaiboon
,
S.
,
J. P.
Vogel
,
A. B.
Moller
,
P.
Lumbiganon
,
M.
Petzold
,
D.
Hogan
,
S.
Landoulsi
,
N.
Jampathong
,
K.
Kongwattanakul
,
M.
Laopaiboon
, et al
.
2019
.
Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis.
Lancet Glob. Health
7
:
e37
e46
.
205
Gravett
,
M. G.
,
D.
Hummel
,
D. A.
Eschenbach
,
K. K.
Holmes
.
1986
.
Preterm labor associated with subclinical amniotic fluid infection and with bacterial vaginosis.
Obstet. Gynecol.
67
:
229
237
.
206
Romero
,
R.
,
M.
Mazor
,
Y. K.
Wu
,
M.
Sirtori
,
E.
Oyarzun
,
M. D.
Mitchell
,
J. C.
Hobbins
.
1988
.
Infection in the pathogenesis of preterm labor.
Semin. Perinatol.
12
:
262
279
.
207
Romero
,
R.
,
M.
Sirtori
,
E.
Oyarzun
,
C.
Avila
,
M.
Mazor
,
R.
Callahan
,
V.
Sabo
,
A. P.
Athanassiadis
,
J. C.
Hobbins
.
1989
.
Infection and labor. V. Prevalence, microbiology, and clinical significance of intraamniotic infection in women with preterm labor and intact membranes.
Am. J. Obstet. Gynecol.
161
:
817
824
.
208
Gravett
,
M. G.
,
S. S.
Witkin
,
G. J.
Haluska
,
J. L.
Edwards
,
M. J.
Cook
,
M. J.
Novy
.
1994
.
An experimental model for intraamniotic infection and preterm labor in rhesus monkeys.
Am. J. Obstet. Gynecol.
171
:
1660
1667
.
209
Gomez
,
R.
,
R.
Romero
,
S. S.
Edwin
,
C.
David
.
1997
.
Pathogenesis of preterm labor and preterm premature rupture of membranes associated with intraamniotic infection.
Infect. Dis. Clin. North Am.
11
:
135
176
.
210
Kallapur
,
S. G.
,
K. E.
Willet
,
A. H.
Jobe
,
M.
Ikegami
,
C. J.
Bachurski
.
2001
.
Intra-amniotic endotoxin: chorioamnionitis precedes lung maturation in preterm lambs.
Am. J. Physiol. Lung Cell. Mol. Physiol.
280
:
L527
L536
.
211
Novy
,
M. J.
,
L.
Duffy
,
M. K.
Axthelm
,
D. W.
Sadowsky
,
S. S.
Witkin
,
M. G.
Gravett
,
G. H.
Cassell
,
K. B.
Waites
.
2009
.
Ureaplasma parvum or Mycoplasma hominis as sole pathogens cause chorioamnionitis, preterm delivery, and fetal pneumonia in rhesus macaques.
Reprod. Sci.
16
:
56
70
.
212
Whidbey
,
C.
,
M. I.
Harrell
,
K.
Burnside
,
L.
Ngo
,
A. K.
Becraft
,
L. M.
Iyer
,
L.
Aravind
,
J.
Hitti
,
K. M.
Adams Waldorf
,
L.
Rajagopal
.
2013
.
A hemolytic pigment of Group B Streptococcus allows bacterial penetration of human placenta.
J. Exp. Med.
210
:
1265
1281
.
213
Combs
,
C. A.
,
M.
Gravett
,
T. J.
Garite
,
D. E.
Hickok
,
J.
Lapidus
,
R.
Porreco
,
J.
Rael
,
T.
Grove
,
T. K.
Morgan
,
W.
Clewell
, et al
ProteoGenix/Obstetrix Collaborative Research Network
.
2014
.
Amniotic fluid infection, inflammation, and colonization in preterm labor with intact membranes.
Am. J. Obstet. Gynecol.
210
:
125.e1
125.e15
.
214
Cobo
,
T.
,
M.
Kacerovsky
,
B.
Jacobsson
.
2014
.
Amniotic fluid infection, inflammation, and colonization in preterm labor with intact membranes.
Am. J. Obstet. Gynecol.
211
:
708
.
215
Romero
,
R.
,
J.
Miranda
,
T.
Chaiworapongsa
,
P.
Chaemsaithong
,
F.
Gotsch
,
Z.
Dong
,
A. I.
Ahmed
,
B. H.
Yoon
,
S. S.
Hassan
,
C. J.
Kim
,
S. J.
Korzeniewski
,
L.
Yeo
.
2014
.
A novel molecular microbiologic technique for the rapid diagnosis of microbial invasion of the amniotic cavity and intra-amniotic infection in preterm labor with intact membranes.
Am. J. Reprod. Immunol.
71
:
330
358
.
216
Romero
,
R.
,
J.
Miranda
,
T.
Chaiworapongsa
,
S. J.
Korzeniewski
,
P.
Chaemsaithong
,
F.
Gotsch
,
Z.
Dong
,
A. I.
Ahmed
,
B. H.
Yoon
,
S. S.
Hassan
,
C. J.
Kim
,
L.
Yeo
.
2014
.
Prevalence and clinical significance of sterile intra-amniotic inflammation in patients with preterm labor and intact membranes.
Am. J. Reprod. Immunol.
72
:
458
474
.
217
Romero
,
R.
,
K. R.
Manogue
,
M. D.
Mitchell
,
Y. K.
Wu
,
E.
Oyarzun
,
J. C.
Hobbins
,
A.
Cerami
.
1989
.
Infection and labor. IV. Cachectin-tumor necrosis factor in the amniotic fluid of women with intraamniotic infection and preterm labor.
Am. J. Obstet. Gynecol.
161
:
336
341
.
218
Cherouny
,
P. H.
,
G. A.
Pankuch
,
R.
Romero
,
J. J.
Botti
,
D. C.
Kuhn
,
L. M.
Demers
,
P. C.
Appelbaum
.
1993
.
Neutrophil attractant/activating peptide-1/interleukin-8: association with histologic chorioamnionitis, preterm delivery, and bioactive amniotic fluid leukoattractants.
Am. J. Obstet. Gynecol.
169
:
1299
1303
.
219
Keelan
,
J. A.
,
K.
Wang
,
T.
Chaiworapongsa
,
R.
Romero
,
M. D.
Mitchell
,
T. A.
Sato
,
D. A.
Brown
,
W. D.
Fairlie
,
S. N.
Breit
.
2003
.
Macrophage inhibitory cytokine 1 in fetal membranes and amniotic fluid from pregnancies with and without preterm labour and premature rupture of membranes.
Mol. Hum. Reprod.
9
:
535
540
.
220
Thomakos
,
N.
,
G.
Daskalakis
,
A.
Papapanagiotou
,
N.
Papantoniou
,
S.
Mesogitis
,
A.
Antsaklis
.
2010
.
Amniotic fluid interleukin-6 and tumor necrosis factor-alpha at mid-trimester genetic amniocentesis: relationship to intra-amniotic microbial invasion and preterm delivery.
Eur. J. Obstet. Gynecol. Reprod. Biol.
148
:
147
151
.
221
Kacerovsky
,
M.
,
P.
Celec
,
B.
Vlkova
,
K.
Skogstrand
,
D. M.
Hougaard
,
T.
Cobo
,
B.
Jacobsson
.
2013
.
Amniotic fluid protein profiles of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria.
PLoS One
8
: e60399.
222
Romero
,
R.
,
J. C.
Grivel
,
A. L.
Tarca
,
P.
Chaemsaithong
,
Z.
Xu
,
W.
Fitzgerald
,
S. S.
Hassan
,
T.
Chaiworapongsa
,
L.
Margolis
.
2015
.
Evidence of perturbations of the cytokine network in preterm labor.
Am. J. Obstet. Gynecol.
213
:
836.e1
836.e18
.
223
Romero
,
R.
,
P.
Chaemsaithong
,
N.
Chaiyasit
,
N.
Docheva
,
Z.
Dong
,
C. J.
Kim
,
Y. M.
Kim
,
J. S.
Kim
,
F.
Qureshi
,
S. M.
Jacques
, et al
.
2017
.
CXCL10 and IL-6: markers of two different forms of intra-amniotic inflammation in preterm labor.
Am. J. Reprod. Immunol.
DOI: 10.1111/aji.12685.
224
Romero
,
R.
,
R.
Quintero
,
J.
Nores
,
C.
Avila
,
M.
Mazor
,
S.
Hanaoka
,
Z.
Hagay
,
L.
Merchant
,
J. C.
Hobbins
.
1991
.
Amniotic fluid white blood cell count: a rapid and simple test to diagnose microbial invasion of the amniotic cavity and predict preterm delivery.
Am. J. Obstet. Gynecol.
165
:
821
830
.
225
Romero
,
R.
,
B. H.
Yoon
,
M.
Mazor
,
R.
Gomez
,
M. P.
Diamond
,
J. S.
Kenney
,
M.
Ramirez
,
P. L.
Fidel
,
Y.
Sorokin
,
D.
Cotton
, et al
.
1993
.
The diagnostic and prognostic value of amniotic fluid white blood cell count, glucose, interleukin-6, and gram stain in patients with preterm labor and intact membranes.
Am. J. Obstet. Gynecol.
169
:
805
816
.
226
Romero
,
R.
,
B. H.
Yoon
,
M.
Mazor
,
R.
Gomez
,
R.
Gonzalez
,
M. P.
Diamond
,
P.
Baumann
,
H.
Araneda
,
J. S.
Kenney
,
D. B.
Cotton
, et al
.
1993
.
A comparative study of the diagnostic performance of amniotic fluid glucose, white blood cell count, interleukin-6, and gram stain in the detection of microbial invasion in patients with preterm premature rupture of membranes.
Am. J. Obstet. Gynecol.
169
:
839
851
.
227
Gomez
,
R.
,
R.
Romero
,
M.
Galasso
,
E.
Behnke
,
A.
Insunza
,
D. B.
Cotton
.
1994
.
The value of amniotic fluid interleukin-6, white blood cell count, and gram stain in the diagnosis of microbial invasion of the amniotic cavity in patients at term.
Am. J. Reprod. Immunol.
32
:
200
210
.
228
Yoon
,
B. H.
,
S. H.
Yang
,
J. K.
Jun
,
K. H.
Park
,
C. J.
Kim
,
R.
Romero
.
1996
.
Maternal blood C-reactive protein, white blood cell count, and temperature in preterm labor: a comparison with amniotic fluid white blood cell count.
Obstet. Gynecol.
87
:
231
237
.
229
Gomez-Lopez
,
N.
,
R.
Romero
,
V.
Garcia-Flores
,
Y.
Xu
,
Y.
Leng
,
A.
Alhousseini
,
S. S.
Hassan
,
B.
Panaitescu
.
2017
.
Amniotic fluid neutrophils can phagocytize bacteria: A mechanism for microbial killing in the amniotic cavity.
Am. J. Reprod. Immunol.
78
.
230
Gomez-Lopez
,
N.
,
R.
Romero
,
Y.
Xu
,
Y.
Leng
,
V.
Garcia-Flores
,
D.
Miller
,
S. M.
Jacques
,
S. S.
Hassan
,
J.
Faro
,
A.
Alsamsam
, et al
.
2017
.
Are amniotic fluid neutrophils in women with intraamniotic infection and/or inflammation of fetal or maternal origin?
Am. J. Obstet. Gynecol.
217
:
693.e1
693.e16
.
231
Gomez-Lopez
,
N.
,
R.
Romero
,
Y.
Xu
,
D.
Miller
,
R.
Unkel
,
M.
Shaman
,
S. M.
Jacques
,
B.
Panaitescu
,
V.
Garcia-Flores
,
S. S.
Hassan
.
2017
.
Neutrophil extracellular traps in the amniotic cavity of women with intra-amniotic infection: a new mechanism of host defense.
Reprod. Sci.
24
:
1139
1153
.
232
Romero
,
R.
,
S.
Durum
,
C. A.
Dinarello
,
E.
Oyarzun
,
J. C.
Hobbins
,
M. D.
Mitchell
.
1989
.
Interleukin-1 stimulates prostaglandin biosynthesis by human amnion.
Prostaglandins
37
:
13
22
.
233
Hertelendy
,
F.
,
R.
Romero
,
M.
Molnar
,
H.
Todd
,
J. J.
Baldassare
.
1993
.
Cytokine-initiated signal transduction in human myometrial cells.
Am. J. Reprod. Immunol.
30
:
49
57
.
234
Belt
,
A. R.
,
J. J.
Baldassare
,
M.
Molnár
,
R.
Romero
,
F.
Hertelendy
.
1999
.
The nuclear transcription factor NF-kappaB mediates interleukin-1beta-induced expression of cyclooxygenase-2 in human myometrial cells.
Am. J. Obstet. Gynecol.
181
:
359
366
.
235
Watari
,
M.
,
H.
Watari
,
M. E.
DiSanto
,
S.
Chacko
,
G. P.
Shi
,
J. F.
Strauss
III
.
1999
.
Pro-inflammatory cytokines induce expression of matrix-metabolizing enzymes in human cervical smooth muscle cells.
Am. J. Pathol.
154
:
1755
1762
.
236
Hertelendy
,
F.
,
P.
Rastogi
,
M.
Molnar
,
R.
Romero
.
2001
.
Interleukin-1beta-induced prostaglandin E2 production in human myometrial cells: role of a pertussis toxin-sensitive component.
Am. J. Reprod. Immunol.
45
:
142
147
.
237
Heng
,
Y. J.
,
S.
Liong
,
M.
Permezel
,
G. E.
Rice
,
M. K.
Di Quinzio
,
H. M.
Georgiou
.
2014
.
The interplay of the interleukin 1 system in pregnancy and labor.
Reprod. Sci.
21
:
122
130
.
238
Ibrahim
,
S. A.
,
W. E. t.
Ackerman
,
T. L.
Summerfield
,
C. J.
Lockwood
,
F.
Schatz
,
D. A.
Kniss
.
2016
.
Inflammatory gene networks in term human decidual cells define a potential signature for cytokine-mediated parturition.
Am. J. Obstet. Gynecol.
214
:
284.e1
284.e47
.
239
Romero
,
R.
,
M.
Mazor
,
B.
Tartakovsky
.
1991
.
Systemic administration of interleukin-1 induces preterm parturition in mice.
Am. J. Obstet. Gynecol.
165
:
969
971
.
240
Romero
,
R.
,
B.
Tartakovsky
.
1992
.
The natural interleukin-1 receptor antagonist prevents interleukin-1-induced preterm delivery in mice.
Am. J. Obstet. Gynecol.
167
:
1041
1045
.
241
Witkin
,
S. S.
,
M. G.
Gravett
,
G. J.
Haluska
,
M. J.
Novy
.
1994
.
Induction of interleukin-1 receptor antagonist in rhesus monkeys after intraamniotic infection with group B streptococci or interleukin-1 infusion.
Am. J. Obstet. Gynecol.
171
:
1668
1672
.
242
Baggia
,
S.
,
M. G.
Gravett
,
S. S.
Witkin
,
G. J.
Haluska
,
M. J.
Novy
.
1996
.
Interleukin-1 beta intra-amniotic infusion induces tumor necrosis factor-alpha, prostaglandin production, and preterm contractions in pregnant rhesus monkeys.
J. Soc. Gynecol. Investig.
3
:
121
126
.
243
Vadillo-Ortega
,
F.
,
D. W.
Sadowsky
,
G. J.
Haluska
,
C.
Hernandez-Guerrero
,
R.
Guevara-Silva
,
M. G.
Gravett
,
M. J.
Novy
.
2002
.
Identification of matrix metalloproteinase-9 in amniotic fluid and amniochorion in spontaneous labor and after experimental intrauterine infection or interleukin-1 beta infusion in pregnant rhesus monkeys.
Am. J. Obstet. Gynecol.
186
:
128
138
.
244
Sadowsky
,
D. W.
,
K. M.
Adams
,
M. G.
Gravett
,
S. S.
Witkin
,
M. J.
Novy
.
2006
.
Preterm labor is induced by intraamniotic infusions of interleukin-1beta and tumor necrosis factor-alpha but not by interleukin-6 or interleukin-8 in a nonhuman primate model.
Am. J. Obstet. Gynecol.
195
:
1578
1589
.
245
Presicce
,
P.
,
P.
Senthamaraikannan
,
M.
Alvarez
,
C. M.
Rueda
,
M.
Cappelletti
,
L. A.
Miller
,
A. H.
Jobe
,
C. A.
Chougnet
,
S. G.
Kallapur
.
2015
.
Neutrophil recruitment and activation in decidua with intra-amniotic IL-1beta in the preterm rhesus macaque.
Biol. Reprod.
92
:
56
.
246
Arntzen
,
K. J.
,
A. M.
Kjøllesdal
,
J.
Halgunset
,
L.
Vatten
,
R.
Austgulen
.
1998
.
TNF, IL-1, IL-6, IL-8 and soluble TNF receptors in relation to chorioamnionitis and premature labor.
J. Perinat. Med.
26
:
17
26
.
247
Marconi
,
C.
,
B. R.
de Andrade Ramos
,
J. C.
Peracoli
,
G. G.
Donders
,
M. G.
da Silva
.
2011
.
Amniotic fluid interleukin-1 beta and interleukin-6, but not interleukin-8 correlate with microbial invasion of the amniotic cavity in preterm labor.
Am. J. Reprod. Immunol.
65
:
549
556
.
248
Jacobsson
,
B.
,
R. M.
Holst
,
I.
Mattsby-Baltzer
,
N.
Nikolaitchouk
,
U. B.
Wennerholm
,
H.
Hagberg
.
2003
.
Interleukin-18 in cervical mucus and amniotic fluid: relationship to microbial invasion of the amniotic fluid, intra-amniotic inflammation and preterm delivery.
BJOG
110
:
598
603
.
249
Hillier
,
S. L.
,
J.
Martius
,
M.
Krohn
,
N.
Kiviat
,
K. K.
Holmes
,
D. A.
Eschenbach
.
1988
.
A case-control study of chorioamnionic infection and histologic chorioamnionitis in prematurity.
N. Engl. J. Med.
319
:
972
978
.
250
Romero
,
R.
,
C. M.
Salafia
,
A. P.
Athanassiadis
,
S.
Hanaoka
,
M.
Mazor
,
W.
Sepulveda
,
M. B.
Bracken
.
1992
.
The relationship between acute inflammatory lesions of the preterm placenta and amniotic fluid microbiology.
Am. J. Obstet. Gynecol.
166
:
1382
1388
.
251
Gomez-Lopez
,
N.
,
R.
Romero
,
Y.
Xu
,
O.
Plazyo
,
R.
Unkel
,
Y.
Leng
,
N. G.
Than
,
T.
Chaiworapongsa
,
B.
Panaitescu
,
Z.
Dong
, et al
.
2017
.
A role for the inflammasome in spontaneous preterm labor with acute histologic chorioamnionitis.
Reprod. Sci.
24
:
1382
1401
.
252
Gomez-Lopez
,
N.
,
R.
Romero
,
B.
Panaitescu
,
Y.
Leng
,
Y.
Xu
,
A. L.
Tarca
,
J.
Faro
,
P.
Pacora
,
S. S.
Hassan
,
C. D.
Hsu
.
2018
.
Inflammasome activation during spontaneous preterm labor with intra-amniotic infection or sterile intra-amniotic inflammation.
Am. J. Reprod. Immunol.
80
:
e13049
.
253
Gomez-Lopez
,
N.
,
R.
Romero
,
A. L.
Tarca
,
D.
Miller
,
B.
Panaitescu
,
G.
Schwenkel
,
D. W.
Gudicha
,
S. S.
Hassan
,
P.
Pacora
,
E.
Jung
,
C. D.
Hsu
.
2019
.
Gasdermin D: evidence of pyroptosis in spontaneous preterm labor with sterile intra-amniotic inflammation or intra-amniotic infection.
Am. J. Reprod. Immunol.
DOI: 10.1111/aji.13184.
254
Jaiswal
,
M. K.
,
V.
Agrawal
,
T.
Mallers
,
A.
Gilman-Sachs
,
E.
Hirsch
,
K. D.
Beaman
.
2013
.
Regulation of apoptosis and innate immune stimuli in inflammation-induced preterm labor.
J. Immunol.
191
:
5702
5713
.
255
Whidbey
,
C.
,
J.
Vornhagen
,
C.
Gendrin
,
E.
Boldenow
,
J. M.
Samson
,
K.
Doering
,
L.
Ngo
,
E. A.
Ezekwe
Jr.
,
J. H.
Gundlach
,
M. A.
Elovitz
, et al
.
2015
.
A streptococcal lipid toxin induces membrane permeabilization and pyroptosis leading to fetal injury.
EMBO Mol. Med.
7
:
488
505
.
256
Cardenas
,
I.
,
R. E.
Means
,
P.
Aldo
,
K.
Koga
,
S. M.
Lang
,
C. J.
Booth
,
A.
Manzur
,
E.
Oyarzun
,
R.
Romero
,
G.
Mor
.
2010
.
Viral infection of the placenta leads to fetal inflammation and sensitization to bacterial products predisposing to preterm labor. [Published erratum appears in 2011 J. Immunol. 187: 2835.]
J. Immunol.
185
:
1248
1257
.
257
Cardenas
,
I.
,
G.
Mor
,
P.
Aldo
,
S. M.
Lang
,
P.
Stabach
,
A.
Sharp
,
R.
Romero
,
S.
Mazaki-Tovi
,
M.
Gervasi
,
R. E.
Means
.
2011
.
Placental viral infection sensitizes to endotoxin-induced pre-term labor: a double hit hypothesis.
Am. J. Reprod. Immunol.
65
:
110
117
.
258
Faro
,
J.
,
R.
Romero
,
G.
Schwenkel
,
V.
Garcia-Flores
,
M.
Arenas-Hernandez
,
Y.
Leng
,
Y.
Xu
,
D.
Miller
,
S. S.
Hassan
,
N.
Gomez-Lopez
.
2019
.
Intra-amniotic inflammation induces preterm birth by activating the NLRP3 inflammasome.
Biol. Reprod.
100
:
1290
1305
.
259
Oppenheim
,
J. J.
,
D.
Yang
.
2005
.
Alarmins: chemotactic activators of immune responses.
Curr. Opin. Immunol.
17
:
359
365
.
260
Rubartelli
,
A.
,
M. T.
Lotze
.
2007
.
Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox.
Trends Immunol.
28
:
429
436
.
261
Lotze
,
M. T.
,
H. J.
Zeh
,
A.
Rubartelli
,
L. J.
Sparvero
,
A. A.
Amoscato
,
N. R.
Washburn
,
M. E.
Devera
,
X.
Liang
,
M.
Tör
,
T.
Billiar
.
2007
.
The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity.
Immunol. Rev.
220
:
60
81
.
262
Romero
,
R.
,
T.
Chaiworapongsa
,
Z.
Alpay Savasan
,
Y.
Xu
,
Y.
Hussein
,
Z.
Dong
,
J. P.
Kusanovic
,
C. J.
Kim
,
S. S.
Hassan
.
2011
.
Damage-associated molecular patterns (DAMPs) in preterm labor with intact membranes and preterm PROM: a study of the alarmin HMGB1.
J. Matern. Fetal Neonatal Med.
24
:
1444
1455
.
263
Gomez-Lopez
,
N.
,
R.
Romero
,
O.
Plazyo
,
B.
Panaitescu
,
A. E.
Furcron
,
D.
Miller
,
T.
Roumayah
,
E.
Flom
,
S. S.
Hassan
.
2016
.
Intra-amniotic administration of HMGB1 induces spontaneous preterm labor and birth.
Am. J. Reprod. Immunol.
75
:
3
7
.
264
Plazyo
,
O.
,
R.
Romero
,
R.
Unkel
,
A.
Balancio
,
T. N.
Mial
,
Y.
Xu
,
Z.
Dong
,
S. S.
Hassan
,
N.
Gomez-Lopez
.
2016
.
HMGB1 induces an inflammatory response in the chorioamniotic membranes that is partially mediated by the inflammasome.
Biol. Reprod.
95
:
130
.
265
Chaiworapongsa
,
T.
,
O.
Erez
,
J. P.
Kusanovic
,
E.
Vaisbuch
,
S.
Mazaki-Tovi
,
F.
Gotsch
,
N. G.
Than
,
P.
Mittal
,
Y. M.
Kim
,
N.
Camacho
,
S.
Edwin
,
R.
Gomez
,
S. S.
Hassan
,
R.
Romero
.
2008
.
Amniotic fluid heat shock protein 70 concentration in histologic chorioamnionitis, term and preterm parturition.
J. Matern. Fetal Neonatal Med.
21
:
449
461
.
266
Romão-Veiga
,
M.
,
M. L.
Matias
,
V. R.
Ribeiro
,
P. R.
Nunes
,
V. T.
M Borges
,
J. C.
Peraçoli
,
M. T. S.
Peraçoli
.
2018
.
Induction of systemic inflammation by hyaluronan and hsp70 in women with pre-eclampsia.
Cytokine
105
:
23
31
.
267
Matias
,
M. L.
,
V. J.
Gomes
,
M.
Romao-Veiga
,
V. R.
Ribeiro
,
P. R.
Nunes
,
G. G.
Romagnoli
,
J. C.
Peracoli
,
M. T. S.
Peracoli
.
2019
.
Silibinin downregulates the NF-κB pathway and NLRP1/NLRP3 inflammasomes in monocytes from pregnant women with preeclampsia.
Molecules
. DOI: 10.3390/molecules24081548.
268
Pontillo
,
A.
,
E. C.
Reis
,
P. N.
Bricher
,
P.
Vianna
,
S.
Diniz
,
K. S.
Fernandes
,
J. A.
Chies
,
V.
Sandrim
.
2015
.
NLRP1 L155H polymorphism is a risk factor for preeclampsia development.
Am. J. Reprod. Immunol.
73
:
577
581
.
269
Xu
,
L.
,
S.
Li
,
Z.
Liu
,
S.
Jiang
,
J.
Wang
,
M.
Guo
,
X.
Zhao
,
W.
Song
,
S.
Liu
.
2019
.
The NLRP3 rs10754558 polymorphism is a risk factor for preeclampsia in a Chinese Han population.
J. Matern. Fetal Neonatal Med.
32
:
1792
1799
.
270
Robbins
,
G. R.
,
H.
Wen
,
J. P.
Ting
.
2014
.
Inflammasomes and metabolic disorders: old genes in modern diseases.
Mol. Cell
54
:
297
308
.
271
Patel
,
S.
2018
.
Danger-associated molecular patterns (DAMPs): the derivatives and triggers of inflammation.
Curr. Allergy Asthma Rep.
18
:
63
.
272
Liu
,
Z.
,
X.
Zhao
,
H.
Shan
,
H.
Gao
,
P.
Wang
.
2019
.
microRNA-520c-3p suppresses NLRP3 inflammasome activation and inflammatory cascade in preeclampsia by downregulating NLRP3.
Inflamm. Res.
68
:
643
654
.
273
Shirasuna
,
K.
,
T.
Karasawa
,
F.
Usui
,
M.
Kobayashi
,
T.
Komada
,
H.
Kimura
,
A.
Kawashima
,
A.
Ohkuchi
,
S.
Taniguchi
,
M.
Takahashi
.
2015
.
NLRP3 deficiency improves angiotensin II-induced hypertension but not fetal growth restriction during pregnancy.
Endocrinology
156
:
4281
4292
.
274
Shirasuna
,
K.
,
F.
Usui
,
T.
Karasawa
,
H.
Kimura
,
A.
Kawashima
,
H.
Mizukami
,
A.
Ohkuchi
,
S.
Nishimura
,
J.
Sagara
,
T.
Noda
, et al
.
2015
.
Nanosilica-induced placental inflammation and pregnancy complications: different roles of the inflammasome components NLRP3 and ASC.
Nanotoxicology
9
:
554
567
.
275
Seno
,
K.
,
S.
Sase
,
A.
Ozeki
,
H.
Takahashi
,
A.
Ohkuchi
,
H.
Suzuki
,
S.
Matsubara
,
H.
Iwata
,
T.
Kuwayama
,
K.
Shirasuna
.
2017
.
Advanced glycation end products regulate interleukin-1β production in human placenta.
J. Reprod. Dev.
63
:
401
408
.
276
Kohli
,
S.
,
S.
Ranjan
,
J.
Hoffmann
,
M.
Kashif
,
E. A.
Daniel
,
M. M.
Al-Dabet
,
F.
Bock
,
S.
Nazir
,
H.
Huebner
,
P. R.
Mertens
, et al
.
2016
.
Maternal extracellular vesicles and platelets promote preeclampsia via inflammasome activation in trophoblasts.
Blood
128
:
2153
2164
.
277
Mulla
,
M. J.
,
J. E.
Salmon
,
L. W.
Chamley
,
J. J.
Brosens
,
C. M.
Boeras
,
P. B.
Kavathas
,
V. M.
Abrahams
.
2013
.
A role for uric acid and the Nalp3 inflammasome in antiphospholipid antibody-induced IL-1β production by human first trimester trophoblast.
PLoS One
8
: e65237.
278
Leon-Martinez
,
D.
,
M. J.
Mulla
,
C. S.
Han
,
L. W.
Chamley
,
V. M.
Abrahams
.
2018
.
Modulation of trophoblast function by concurrent hyperglycemia and antiphospholipid antibodies is in part TLR4-dependent.
Am. J. Reprod. Immunol.
80
:
e13045
.
279
Mulla
,
M. J.
,
I. C.
Weel
,
J. A.
Potter
,
S. M.
Gysler
,
J. E.
Salmon
,
M. T. S.
Peraçoli
,
C. V.
Rothlin
,
L. W.
Chamley
,
V. M.
Abrahams
.
2018
.
Antiphospholipid antibodies inhibit trophoblast toll-like receptor and inflammasome negative regulators.
Arthritis Rheumatol.
70
:
891
902
.
280
Han
,
C. S.
,
M. A.
Herrin
,
M. C.
Pitruzzello
,
M. J.
Mulla
,
E. F.
Werner
,
C. M.
Pettker
,
C. A.
Flannery
,
V. M.
Abrahams
.
2015
.
Glucose and metformin modulate human first trimester trophoblast function: a model and potential therapy for diabetes-associated uteroplacental insufficiency.
Am. J. Reprod. Immunol.
73
:
362
371
.
281
Abi Nahed
,
R.
,
D.
Reynaud
,
A. J.
Borg
,
W.
Traboulsi
,
A.
Wetzel
,
V.
Sapin
,
S.
Brouillet
,
M. N.
Dieudonné
,
M.
Dakouane-Giudicelli
,
M.
Benharouga
, et al
.
2019
.
NLRP7 is increased in human idiopathic fetal growth restriction and plays a critical role in trophoblast differentiation.
J. Mol. Med. (Berl.)
97
:
355
367
.

The authors have no financial conflicts of interest.