The mammalian intestine is a complex environment that is constantly exposed to Ags derived from food, microbiota, and metabolites. Intestinal dendritic cells (DC) have the responsibility of establishing oral tolerance against these Ags while initiating immune responses against mucosal pathogens. We now know that DC are a heterogeneous population of innate immune cells composed of classical and monocyte-derived DC, Langerhans cells, and plasmacytoid DC. In the intestine, DC are found in organized lymphoid tissues, such as the mesenteric lymph nodes and Peyer’s patches, as well as in the lamina propria. In this Brief Review, we review recent work that describes a division of labor between and collaboration among gut DC subsets in the context of intestinal homeostasis and inflammation. Understanding relationships between DC subtypes and their biological functions will rationalize oral vaccine design and will provide insights into treatments that quiet pathological intestinal inflammation.

The mammalian intestine is a complex environment that is constantly exposed to an array of Ags derived from food and the microbiota. It is estimated that we ingest over 100 g of foreign protein per day in our diet (1). Added to this potential antigenic load, the human intestine is colonized by ∼1013 bacteria (2). Physical and immunological barriers in the intestine prevent these Ags from triggering potentially detrimental immune responses. The physical barrier is composed of mucus and glycocalyx that coat a single layer of epithelial cells (3). The immunological barrier includes intraepithelial lymphocytes and immune cells residing in the intestinal lamina propria (LP) and the GALT. LP- and GALT-resident dendritic cells (DC) have been particularly implicated both in the maintenance of tolerance toward the commensal microbiota and food and in the generation of protective immune responses against pathogens. This impressive flexibility in function is due in part to the ability of DC to sense and integrate signals from their local environment, thus shaping the ensuing immune response. In this Brief Review, we review the different types of classical DC (cDC) located in the LP and the GALT, as well as discuss how cDC subsets balance tolerance and inflammation in both mice and humans.

DC are composed of a largely heterogenous population of APCs that can be mostly divided up into cDC, plasmacytoid DC (pDC), and monocyte-derived DC. Although it should be noted that all of the mentioned DC types can be found in the intestinal LP and GALT and they each exhibit unique functions, this review focuses in particular on cDC.

cDC exhibit superior capacity for taking up, processing, and presenting Ags to naive T cells (4). Bona fide cDC express high levels of CD11c and MHC class II (MHC-II), lack the expression of macrophage-associated markers CD64 and F4/80, and express the transcription factor ZBTB46 (5). cDC can be further grouped into type 1 cDC (cDC1) and type 2 cDC (cDC2): the former are superior at initiating cytotoxic CD8+ T cell and Th1 responses, whereas the latter excel at inducing and maintaining Th2, Th17, and T regulatory (Treg) responses (6). Within gut lymphoid tissues, cDC1 can be identified as CD4CD8α+CD11b and cDC2 can be identified as CD4+CD8αCD11b+ (Table I). In gut nonlymphoid tissues, cDC1 are usually classified as CD103+CD11b whereas cDC2 comprise both CD103+CD11b+ and CD103CD11b+ (Table I). It is important to note that because macrophages are a major component in the CD103CD11b+ population, macrophage markers (CD64, F4/80, CX3CR1) should be included to differentiate true DC versus macrophages (7).

Table I.
cDC subsets in the mouse intestine
cDC1a,bcDC2a,c
PP CD8α+CD11b CD8αCD11b+ 
MLN resident CD8α+CD11b CD8αCD11b+ 
MLN migratory CD103+CD11bCX3CR1 CD103+CD11b+CX3CR1lo 
Intestinal LPd CD103+CD11bCX3CR1 Subset 1: CD103+CD11b+CX3CR1lo 
  Subset 2: CD103CD11b+CX3CR1int 
   CD103 migratory cDC2 have also been described (138
cDC1a,bcDC2a,c
PP CD8α+CD11b CD8αCD11b+ 
MLN resident CD8α+CD11b CD8αCD11b+ 
MLN migratory CD103+CD11bCX3CR1 CD103+CD11b+CX3CR1lo 
Intestinal LPd CD103+CD11bCX3CR1 Subset 1: CD103+CD11b+CX3CR1lo 
  Subset 2: CD103CD11b+CX3CR1int 
   CD103 migratory cDC2 have also been described (138
a

CD11c+MHC-II+ Linneg (F4/80, CD64, CD3, B220, NK1.1).

b

Historically defined as CD8α+CD11b and more recently as XCR1+SIRPα.

c

Historically defined as CD8αCD11b+ and more recently as XCR1SIRPα+.

d

For other markers, see Refs. 9, 11, and 12.

Because of the demonstration of nonredundant roles between the CD103+ and CD103 cDC2 subsets and their differential reliance on certain transcription and metabolic factors, we have attempted to discern which particular cDC2 subset contributes to a described phenotype wherever possible. For example, cDC subsets can be identified based on their developmental requirement for certain transcription factors including IRF8 and BATF3 (cDC1) or IRF4 (all cDC2) and RBP-J (CD103+CD11b+ cDC2). Furthermore, although the field is adapting a new marker system to classify cDC across species and tissues using SIRPα and XCR1 (8), for the purposes of this review we will use the CD103/CD11b “historical” markers to differentiate cDC subtypes because the majority of the literature is based on this nomenclature.

DC functions can be studied in vitro and in vivo. To assess DC functionality in vitro, DC subsets are typically sorted based on their surface markers (Table I) and then cultured with danger- or pathogen-associated molecular patterns, Ags, cytokines, and transgenic reporter T cells to read out priming capacity. To isolate DC from the intestinal LP, an enzymatic strategy is usually needed because of the dense network of extracellular matrix proteins in this location. Different combinations of enzymes such as collagenase and dispase can be used to optimize the DC yield. It should be noted, however, that enzymatic treatment may result in loss of cell-surface molecules, and the yield varies from batch to batch (13). Lymphatic DC migrating from the intestine to the mesenteric lymph nodes (MLNs) can be collected by mesenteric lymphadenectomy and thoracic duct cannulation (14). To study human DC function, monocytes are isolated from the peripheral blood and cultured with conditioning media (15). DC from human intestinal biopsies can be obtained either by enzymatic digestion of the tissue (16) or using a walkout method (cells migrating out of biopsies in culture) (17).

To dissect the functions of DC in vivo, one may eliminate cDC using constitutive knockout strains, or deplete particular cDC subsets engineered to express the diphtheria toxin receptor using diphtheria toxin administration (Table II). This approach complements reporter systems that can be used to visualize cDC or cDC subsets (Table II). Because cDC2 are a functionally and phenotypically heterogenous population, care must be taken in interpreting results generated using these tools. We list some commonly used mouse models in Table II. Recent reviews also provide detailed comparisons of different mouse models studying DC and DC subsets (18, 19).

Table II.
Mouse models for studying cDC subsets in the intestine
cDCcDC1cDC2a
Knockout strains CD11c-DTA (25Irf8−/−; Id2−/−; Nfil3−/−; Batf3−/−; CD11c-Irf8−/−; Ztbt46-Irf8−/−; Xcr1-DTA; CD11c-Bcl6−/− (2633huLangerin-DTA; CD11c-Sirpa−/−; CD11c-Cd47−/−; CD11c-Notch2−/−; Csf2r−/−;Csf2−/−; CD11c-Irf4−/−; CD11c-Klf4−/−; CD11c-Prdm1−/−; CD11c-Tgfbr1−/− (11, 22, 23, 3338
Inducible knockout strains CD11c-DTR; Zbtb46-DTR; Zbtb46LSL-DTRCsf1r-Cre (5, 19, 39, 40Clec9a-DTR; Xcr1-DTR (4143Clec4a4-DTR (42
Cre strains CD11c-Cre; Zbtb46-Cre (44, 45Clec9a-Cre; Xcr1-Cre; Karma-Cre (31, 46, 47huLangerin-Cre (48
Reporter strains CD11c-eYFP; Zbtb46-GFP (40, 49Xcr1-Venus; Id2-GFP (43, 50huLangerin-Cre × Rosa26-Stopfl/fl-YFP (48
cDCcDC1cDC2a
Knockout strains CD11c-DTA (25Irf8−/−; Id2−/−; Nfil3−/−; Batf3−/−; CD11c-Irf8−/−; Ztbt46-Irf8−/−; Xcr1-DTA; CD11c-Bcl6−/− (2633huLangerin-DTA; CD11c-Sirpa−/−; CD11c-Cd47−/−; CD11c-Notch2−/−; Csf2r−/−;Csf2−/−; CD11c-Irf4−/−; CD11c-Klf4−/−; CD11c-Prdm1−/−; CD11c-Tgfbr1−/− (11, 22, 23, 3338
Inducible knockout strains CD11c-DTR; Zbtb46-DTR; Zbtb46LSL-DTRCsf1r-Cre (5, 19, 39, 40Clec9a-DTR; Xcr1-DTR (4143Clec4a4-DTR (42
Cre strains CD11c-Cre; Zbtb46-Cre (44, 45Clec9a-Cre; Xcr1-Cre; Karma-Cre (31, 46, 47huLangerin-Cre (48
Reporter strains CD11c-eYFP; Zbtb46-GFP (40, 49Xcr1-Venus; Id2-GFP (43, 50huLangerin-Cre × Rosa26-Stopfl/fl-YFP (48
a

Note that in the case of the intestine, these examples of cDC2 deletion/depletion only pertain to CD103+CD11b+ cDC2 (subset 1). For CD103CD11b+ cDC2 (subset 2), Csf1r−/− mice may be used (34), as well as CD11c-Irf4−/− mice (partial depletion) (23).

The organized structures of the GALT and the gut-draining lymph nodes (LNs) are the principal locations for priming adaptive immune cells in the intestine. The GALT is comprised of Peyer’s patches (PPs), caecal patches, and colonic patches. In addition, smaller lymphoid aggregates (isolated lymphoid follicles and cryptopatches), collectively termed solitary isolated lymphoid tissues (SILTs), are distributed along both the small and large intestine (51). As in other tissues, cDC play an important role in mounting appropriate immune responses against intestinal Ags. The individual features of the intestinal LP, gut-draining LNs, and PPs are discussed below, together with the cDC populations residing in each compartment.

Intestinal LP.

The intestinal LP is located under a single layer of intestinal epithelial cells (interspersed with intraepithelial lymphocytes) and is enriched in lymphocytes, which include numerous plasma cells, and myeloid cells. Three main cDC subsets have been identified in mouse and human intestinal LP: CD103+CD11b cDC1, CD103+CD11b+ cDC2, and CD103CD11b+ cDC2 (Fig. 1, Table I). Along the length of the mouse intestine, there are marked differences in the ratio of CD103+CD11b+ cDC2 versus cDC1, with cDC2 comprising the majority of cDC in the small intestinal LP but being rare in the colonic LP. By contrast, cDC1 are the major CD103+ cDC subset in the colonic LP. Interestingly, the cDC2/cDC1 ratio reflects the local concentration of vitamin A (51, 52). This differential distribution of cDC is also mirrored in the gut-draining LNs that drain the small intestine and colon (12, 53). Unlike in the intestinal LP, SILTs that are distributed along the intestine contain cDC clusters that are absent of cDC2 and enriched in cDC1 and pDC (54). These SILT cDC express CXCL13 to support the recruitment of B cells and consequently formation of B cell follicles (54).

FIGURE 1.

cDC localization in the intestine cDC2 (yellow/green) and cDC1 (purple/red) in the intestine express different surface markers depending on the intestinal organ in which they reside. Within each organ, cDC1 and cDC2 subsets also occupy particular niches (e.g., the follicle versus the dome of the PP) that spatially enable these cDC1/2 to perform their function.

FIGURE 1.

cDC localization in the intestine cDC2 (yellow/green) and cDC1 (purple/red) in the intestine express different surface markers depending on the intestinal organ in which they reside. Within each organ, cDC1 and cDC2 subsets also occupy particular niches (e.g., the follicle versus the dome of the PP) that spatially enable these cDC1/2 to perform their function.

Close modal

Gut-draining LNs.

MLNs, duodenopancreatic LNs, and caudal LNs drain different segments of the intestine (12, 51). Collectively, MLNs, which drain the small intestine, cecum, and the ascending colon, are the largest LNs in the body (12). Both migratory cDC and resident cDC can be found in the MLNs. Migratory cDC are MHC-IIhi with a mature phenotype, whereas resident cDC are MHC-II+ with an immature phenotype (55) (Table I). After activation, small intestinal cDC1 and CD103+ cDC2 carrying luminal Ags migrate to MLNs and present these Ags to naive T cells.

Peyer’s patches.

PPs are large lymphoid structures composed of aggregated lymphoid follicles surrounded by the follicle-associated epithelium (FAE) that forms the interface between the GALT and the luminal microenvironment. The FAE contains specialized cells called microfold (M) cells. M cells transport luminal Ags and bacteria toward underlying immune cells that inhibit or activate the immune response, leading to either tolerance or an inflammatory immune response. Morphologically, PPs are separated into three main domains: the follicular area, the interfollicular region, and the FAE (56). The follicle is surrounded by the subepithelial dome, which contains B cells, T cells, macrophages, and DC. cDC1 are localized within the T cell–rich interfollicular region, whereas cDC2 are present under the FAE in the subepithelial dome (57) (Fig. 1, Table I). A recent paper describes the complex network of PP-resident DC, which teases out the identity of CD11c+CD11b+ DC based on function and localization into CD11b+ cDC2, monocyte-derived lysozyme expressing DC, and CD4+ macrophages (58). Furthermore, the paper also identifies a CD11bCD8α DC subset that possibly represents an immature cDC2 (58).

Does function follow location?

The anatomical distribution of cDC subsets may contribute to maintaining the necessary balance between tolerogenic and proinflammatory immune responses required in different anatomical compartments of the intestine. For example, LNs draining the duodenum are found to contain cDC with lower expression levels of inflammatory cytokine receptors and higher expression of tolerogenic factors (e.g., Aldh1a2) compared with LNs draining the ileum and colon (53). In contrast, the caudal and iliac LNs that drain the distal colon and rectum contain CD103CD11b+ cDC2 that express cyclooxygenase-2 (responsible for generating PGE2) and are sufficient to drive colonic tolerance (24). However, it is worth noting that cDC exhibit considerable functional plasticity that is not necessarily hardwired by anatomical location. For example, the ability of CD103+ cDC to promote Treg differentiation has been shown to be abrogated during intestinal inflammation, unlike during steady-state conditions (59). Therefore, the functionality of intestinal cDC to be either tolerogenic or inflammatory, independent of anatomical location, appears to also rely on environmental cues such as inflammation. Ascribed functions and cases of functional plasticity for different gut cDC subsets are discussed in the following sections.

Intestinal environmental factors contribute to imprint cDC identities and functions. The most well-studied dietary factor is retinoid acid (RA), a metabolite derived from vitamin A. Intestinal stromal cells, epithelial cells, and DC have the capacity to convert vitamin A into RA via intrinsic activity of retinaldehyde dehydrogenase (RALDH) (6062). RA has pleiotropic effects in the intestinal immune system. In the context of DC, RA supports the development of both intestinal cDC1 and cDC2 transcriptional programs, including the upregulation of their own RALDH machinery and α4β7 surface expression on pre-DC for homing toward the intestine (6264). Furthermore, RA preferentially skews toward cDC2 representation rather than cDC1 (63, 65).

In addition to RA, other environmental factors also play a role in dictating DC phenotype and function. In particular, short-chain fatty acids derived from dietary fiber are able to promote cDC1 and CD103+ cDC2 differentiation, partially via induction of RALDH expression in intestinal epithelial cells, which in turn increases Treg numbers, thus promoting oral tolerance (66, 67). Both cDC1 and CD103+ cDC2 express Raldh and have the capacity to imprint gut-homing capacity to Tregs by inducing the receptor CCR9 on Tregs, thus endowing them with the capacity to migrate from the MLN to the intestinal LP (63, 68, 69). Furthermore, short-chain fatty acids such as butyrate and propionate exposure endow DC with the capacity to induce Foxp3 expression in CD4+ T cells via histone deacetylase inhibition, although the authors did not indicate which type of DC mediate this effect (70).

IgA synthesis in the gut.

The gut mucosa represents the largest reservoir of IgA-producing plasma cells (71). IgA secreted across the gut epithelium into the lumen via the polymeric IgA receptor is important for mucosal barrier protection, and influences the composition of the gut microbiota (72). IgA can be produced in a T cell–independent manner or via coordinated interactions with T follicular helper cells (Tfh) within germinal centers in the GALT that select for high-affinity B cell clones. This complexity has resulted in multiple pathways, both DC intrinsic and DC extrinsic, being identified as important for IgA production.

In the case of T-dependent IgA responses, cDC are thought to orchestrate high-affinity IgA Abs to toxins and pathogens (73). PP cDC regulate IgA class switch recombination (CSR) as well as the expression of gut-homing receptors on IgA-producing cells (74, 75). At steady-state, cDC can promote Bcl6 expression and differentiation of Tfh via IL-12 production (76) or conversion of Foxp3+ Treg to Tfh via CD40-CD40L interactions (77). The lymphotoxin β receptor (LTβR) pathway is particularly important for IgA production because LTβR-, LTα-, or LTβ-deficient mice exhibit profound reductions in fecal IgA levels (78), and cDC2-intrinsic LTβR signals have been implicated in this process (75).

In the case of T cell–independent IgA responses that typically target the commensal microbiota, these are mostly generated in the SILTs within the intestinal LP (7981). Although cDC-intrinsic LTβR signaling regulates IgA CSR in the PPs (75), other cDC-extrinsic LTβR signals likely contribute to IgA CSR at steady-state such as stromal cells (78, 82). IgA responses to rotavirus do not require DC-intrinsic LTβR signals or, for that matter, Zbtb46-dependent cDC (83, 84), but rather stromal cell intrinsic LTβR signals (85). In addition to cDC, pDC from the intestine are able to induce IgA CSR in vitro (86) and Ag-specific IgA responses in mice infected with rotavirus (87).

Oral tolerance and Treg.

The usual response to harmless Ags or nutrients is to induce tolerance, which prevents unnecessary inflammation and hypersensitivity. The state of hyporesponsiveness to fed Ags is known as oral tolerance (88). Intestinal cDC are likely integral in ensuring that pathological immune responses to harmless Ags do not develop. cDC that constitutively traffic out of the intestinal LP have been shown to deliver Ags from both commensal bacteria and apoptotic epithelial cells to the MLNs (89, 90). MLN stromal cells are imprinted for high Treg-inducing capacity soon after birth and contribute to lifelong homeostatic intestinal tolerance by constantly modulating functional properties of cDC1 and CD103+ cDC2 (60, 91). MLN cDC1 and CD103+ cDC2 express αvβ8 integrin, which converts latent TGF-β into its active form (92), as well RALDHs and thymic stromal lymphopoietin to foster Treg development (9395). Signaling pathways within cDC, such as Wnt, MAPK p38, TNF receptor-associated factor 6, and TGF-βR, induce intestinal DC to express RALDH, IL-10, and TGF-β, all of which encourage Treg induction while suppressing T effector cells (96100). Both intestinal cDC1 and CD103+CD11b+ cDC2 are able to induce Foxp3+ Treg in vitro (28, 101), with cDC1 expressing the highest levels of Aldh1a2, Tgfb2, and Itgb8 by RNA sequencing (28). Moreover, whereas mice lacking either cDC1 or CD103+CD11b+ cDC2 have normal Treg number in the intestine, huLangerin-DTAxBatf3 mice, which lack both CD103+ cDC subsets, exhibit reduced numbers of Tregs in the small intestinal LP but not in the MLNs (48). Therefore, cDC1 and CD103+CD11b+ cDC2 are mutually redundant in maintaining Treg numbers in the small intestinal LP in vivo.

In addition to the MLN stroma, mechanisms exist within the intestinal LP to maintain tolerance. Microbial components such as polysaccharide A and zymosan promote Treg function and differentiation via cDC (102, 103). In addition, exposure of cDC1 and CD103+ cDC2 to mucin-2, a major host-derived mucus component, subdues cDC responses to microbe-derived signals and promotes the capacity to induce oral tolerance (98). GM-CSF derived from type 3 innate lymphoid cell (ILC) promotes intestinal cDC to secrete RA, which, as mentioned, is critical for the induction of oral tolerance (104). In summary, intestinal cDC can provoke immune tolerance to self and innocuous environmental Ags in the steady-state (105).

Th1 and CTL.

Th1 and CTL responses are crucial for protection against intracellular pathogen challenges, such as rotavirus (84, 106), norovirus (107), Listeria monocytogenes (43), Citrobacter rodentium (108), Toxoplasma gondii (109), and Tritrichomonas musculis (110). Uncontrolled Th1 responses can be harmful and can lead to Th1-mediated colitis. By providing the polarization signal IL-12, intestinal cDC1 control Th1 and CD8+ T cell at steady-state and during infections (27, 32, 84). At a molecular level, TLR ligation is sufficient to induce IL-12 production from DC through a mechanism involving transcription factors IRF8 and MyD88 signaling (111113). IFN-γ stimulation and ligation of CD40 can synergize with TLR signals in IL-12 production from DC (114, 115). In addition to cDC1, cDC2 can cross-present IgG immune complex via the neonatal Fc receptor to CD8+ T cells during colorectal cancer (116).

Th2 and ILC2.

Th2 cells, whose cytokines (IL-4, IL-5, and IL-13) direct IgE- and eosinophil-mediated destruction of pathogens, are effective at controlling helminths and responsible for allergic diseases. DC, particularly the cDC2 subset, have been found to induce Th2 responses in vivo and in vitro (22, 117119). In response to Nippostrongylus brasiliensis, Trichuris muris, and Schistosoma mansoni, cDC2-deficient mice exhibit a reduction in IL-4, IL-5, and IL-13–producing Th2 cells in the MLNs and the intestinal LP (120, 121). Interestingly, the small intestine is a major reservoir for eosinophils, which have been reported to control cDC2 activation and Th2 priming, suggesting the microenvironment created by eosinophils licenses DC activation (122, 123). In addition to eosinophils, ILC2-derived IL-13 has been shown to promote migration of activated lung DC into the mediastinal LN during the primary allergic response (124) and to elicit production of the Th2 cell–attracting chemokine CCL17 by CD103CD11b+ cDC2 during allergic recall responses (125). Whether ILC2 play a critical role in licensing DC to promote Th2 responses in the gut has not been investigated. Recently it has been reported that CD103+CD11b+ cDC2 induce Th2 responses in the small intestine, whereas CD103CD11b+ cDC2 perform this role in the colon, revealing a division of labor among intestinal DC in inducing Th2 responses (121). RA, in contrast, inhibits allergic responses to oral Ags by preventing MLN CD103CD11b+ cDC2 from inducing IL-13–producing inflammatory Th2 cells (126).

Th17 and ILC3.

Intestinal Th17 maintenance is dependent on signals (such as IL-1β) from the microbiota (127), with segmented filamentous bacteria being a prominent contributor (128). Although DC are important for the induction of Th17 cells by segmented filamentous bacteria (129), macrophages also play a key role, with perhaps both DC and macrophages compensating for each other (130). During pathogenic infections, Th17 cells provide protection against the fungus Candida albicans or the bacteria Salmonella typhimurium, C. rodentium, and Yersinia enterocolitica (131134). The induction and differentiation of Th17 cells requires TGF-β together with IL-6 or IL-21 (94, 135), whereas the expansion and maintenance of Th17 requires IL-23 (136). Interestingly, both intestinal LP CD103+CD11b+ and CD103CD11b+ cDC2 can induce Th17 cells in vitro (52, 137, 138). However, a specific reduction in CD103+CD11b+ cDC2 in the small intestinal LP due to DC-specific loss of Notch2 results in a defect in the homeostatic maintenance of small intestinal LP-resident Th17 cells (139). Moreover, intestinal IRF-4–dependent CD103+CD11b+ cDC2 rather than CD103CD11b+ cDC2 are required for the differentiation of homeostatic Th17 in an IL-6–dependent manner in the MLNs. Of importance, when compared side by side in vitro, both CD103+CD11b+ and CD103CD11b+ cDC2 can achieve this, thus the in vivo context is important (23). Finally, selective depletion of CD103+CD11b+ cDC2 in the small intestinal LP and MLNs of huLangerin-DTA transgenic mice results in a reduction in Th17 cells in the small intestinal LP, and the homeostasis of these Th17 cells was independent of cognate CD4/MHC-II interactions (48). However, other DC may compensate for the lack of CD103+CD11b+ cDC2 in huLangerin-DTA transgenic mice when it comes to the induction of IL-22 by ILC3 in response to flagellin or infections with C. rodentium or Salmonella enterica (48). This is in contrast to findings in mice that lack Notch2 in cDC2 in which the IL-22 response to C. rodentium is impaired due to a reduction in cDC2 derived IL-23 (21). It is possible that other Notch2-dependent DC subsets could account for this observation or, alternatively, that there are other unknown vivarium-dependent or model-dependent variables that differ between these studies. Nevertheless, it seems clear that, when studied in their native in vivo environment, CD103+CD11b+ cDC2 rather than CD103CD11b+ cDC2 are largely responsible for the differentiation and maintenance of Th17 cells in the MLNs and small intestinal LP. The molecular requirements for activation of CD103+CD11b+ cDC2 versus CD103CD11b+ cDC2 in promoting a Th17 response may be partially dependent on the distinct requirement of the MyD88 signaling pathway. Specifically, induction of Th17 by CD103+CD11b+ cDC2 is independent of the MyD88 signaling pathway, whereas MyD88 is required for CD103CD11b+ cDC2 to promote Th17 cells (140). Understanding the differential requirements of MyD88 and other similar pathways between cDC2 subsets will have important implications for the design of therapies that activate or inhibit Th17 responses.

Human intestinal DC, like DC in mice and in human blood, exhibit superior T cell stimulation capacity compared with macrophages (141). The phenotype, maturation status, and migratory activity of human intestinal cDC was first reported by the Stagg group in 2001 (17). Similar to mouse intestinal cDC, human intestinal cDC can be divided into several subgroups based on the expression of CD103 and SIRPα (23, 142). CD103SIRPα+ cDC2 can be further divided based on the expression of CCR2 (137). The characterization of human intestinal cDC is summarized in Table III. Recently, mass cytometry (CyTOF) and unsupervised high-dimensional analyses were used to align DC subsets across human, macaque, and mouse tissues, enabling direct comparison of intestinal DC between different species (8).

Table III.
Human intestinal cDC
CD45+CD11c+HLA-DR+Lin(CD3, CD14, CD16, CD19, CD56, CD64)
cDC subsetscDC1cDC2cDC2
Defining markers CD103+SIRPαlo/− CD103+SIRPα+ CD103SIRPα+ 
Transcription factors IRF8, BCL6 IRF4, BLIMP1 
Additional markers CLEC9A(DNGR-1), XCR1, CD141(BDCA-3), CD13, CD26 CD1c(BDCA-1), CD101, CD207, CD209 CD101 
Function Promote cytotoxic CD8+ T cell response Promote T cells into Treg and Th17 cells Promote T cells into Th1 cells 
CD45+CD11c+HLA-DR+Lin(CD3, CD14, CD16, CD19, CD56, CD64)
cDC subsetscDC1cDC2cDC2
Defining markers CD103+SIRPαlo/− CD103+SIRPα+ CD103SIRPα+ 
Transcription factors IRF8, BCL6 IRF4, BLIMP1 
Additional markers CLEC9A(DNGR-1), XCR1, CD141(BDCA-3), CD13, CD26 CD1c(BDCA-1), CD101, CD207, CD209 CD101 
Function Promote cytotoxic CD8+ T cell response Promote T cells into Treg and Th17 cells Promote T cells into Th1 cells 

BCL6, B cell lymphoma 6; BDCA, blood DC Ag; BLIMP1, B lymphocyte–induced maturation protein-1; CLEC9A, C-type lectin domain containing 9A; IRF, IFN regulatory factor; SIRPα, signal regulatory protein α; XCR1, X-C motif chemokine receptor 1.

Human intestinal DC and inflammatory bowel disease.

Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract encompassing two main clinical entities: Crohn's disease and ulcerative colitis. Both forms of IBD are associated with multiple pathogenic factors including environmental changes, an array of susceptibility gene variants, an abnormal gut microbiota, and a broadly dysregulated immune response (143). In the context of IBD, DC contribute to the inflammatory response through TLR2/4-mediated production of cytokines, such as IL-12, IL-6, and IL-23 (144, 145). In terms of cDC subsets, CD103+ cDC (both CD141+ and CD1c+) are reduced in the inflamed intestine, and their RALDH activity is reduced in ulcerative colitis patients compared with control and Crohn's disease patients (146). Early in Crohn's disease, levels of mesenteric fat and production of leptin are observed to be elevated (147). Leptin may promote cDC maturation by increasing CCR7 surface expression on DC to facilitate their migration into mesenteric fat, suggesting a link between mesenteric obesity and inflammation (148). In contrast, intestinal cDC from Crohn's disease patients that are CD83+DC-SIGN+ express lower levels of CCR7 and higher levels of TNF-α compared with controls (149). These data suggest that intestinal inflammation disrupts normal DC trafficking patterns and leads to dysregulated T cell responses and tissue damage.

Integrating our knowledge of cDC in oral vaccine design.

The capacity to generate a potent gut-trophic effector T cell response during a mucosal challenge relies on cDC1 and CD103+ cDC2 that can migrate to the MLNs (150). Therefore, vaccination strategies have employed the use of adjuvants that can promote LP cDC1 and CD103+ cDC2 migration toward the MLN such as flagellin and oral cholera toxin (151, 152). One study described the use of RA as an adjuvant to boost effector and memory T cell responses in mucosal sites during a viral challenge (153). During an intestinal challenge, it is reasonable to assume that RA can be used as an adjuvant to promote DC-mediated IgA production or promote the homing of intestinal cDC to mucosal LNs. As discussed earlier, there are several factors that can modulate the ability of intestinal cDC to generate Th1, Th2, and Th17 responses and should be considered when selecting an adjuvant during the engineering of a vaccine. Future studies aimed at dissecting the different subsets of cDC responsible for passive immunity will shed further light on vaccine design.

An additional modulator of oral vaccine-induced immunity is age. Neonatal mice exhibit a marked deficit in cDC1 and CD103+ cDC2 during the first week of life, perhaps due to the lower production of DC-attracting chemokines by neonatal intestinal epithelial cells. This relative paucity of cDC1 and CD103+CD11b+ cDC2 in neonatal mice renders them susceptible to Cryptosporidium parvum infection (154). Despite their scarcity, cDC1 can provoke “adult-like” CD8+ T cell responses in clearing intestinal viral infections in neonatal mice (84). Understanding the differences in how intestinal cDC initiate immune responses during the neonatal versus adult phases of life and between human and mice can potentially provide insight on the timing of vaccine administration.

The gut is a unique environment where nonresponsiveness to harmless or tolerated Ags needs to be continually maintained while retaining the ability to briskly respond to enteric pathogens. cDC are at the center of this immunological détente due to the different subsets that exist and their accompanying functions, thus providing the immune system with considerable flexibility and nimbleness. With the age of single-cell RNA sequencing upon us, we will undoubtedly learn about new divisions of labor among the already identified cDC subsets. Moreover, we know very little about the stromal cells that underpin the activity of intestinal cDC, but new reporter/depleter mice along with single-cell RNA sequencing application is rapidly shedding light on this question. In the future, therapies that quiet excessive inflammation will go beyond the effector phase of the disease (e.g., blockade of TNF-α) but rather will tackle cDC dysfunction as a means of getting to the route of disease etiopathology.

We apologize to all colleagues whose work was not cited owing to space constraints.

Abbreviations used in this article:

cDC

classical DC

cDC1

type 1 cDC

cDC2

type 2 cDC

CSR

class switch recombination

DC

dendritic cell

FAE

follicle-associated epithelium

IBD

inflammatory bowel disease

ILC

innate lymphoid cell

LN

lymph node

LP

lamina propria

LTβR

lymphotoxin β receptor

MHC-II

MHC class II

MLN

mesenteric lymph node

pDC

plasmacytoid DC

PP

Peyer’s patch

RA

retinoid acid

RALDH

retinaldehyde dehydrogenase

SILT

solitary isolated lymphoid tissue

Tfh

T follicular helper cell

Treg

T regulatory cell.

This work was supported by a Foundation Grant (15992) from the Canadian Institutes of Health Research to J.L.G.

1
Pabst
,
O.
,
A. M.
Mowat
.
2012
.
Oral tolerance to food protein.
Mucosal Immunol.
5
:
232
239
.
2
Sender
,
R.
,
S.
Fuchs
,
R.
Milo
.
2016
.
Revised estimates for the number of human and bacteria cells in the body.
PLoS Biol.
14
: e1002533.
3
Hansson
,
G. C.
2012
.
Role of mucus layers in gut infection and inflammation.
Curr. Opin. Microbiol.
15
:
57
62
.
4
Banchereau
,
J.
,
R. M.
Steinman
.
1998
.
Dendritic cells and the control of immunity.
Nature
392
:
245
252
.
5
Meredith
,
M. M.
,
K.
Liu
,
G.
Darrasse-Jeze
,
A. O.
Kamphorst
,
H. A.
Schreiber
,
P.
Guermonprez
,
J.
Idoyaga
,
C.
Cheong
,
K. H.
Yao
,
R. E.
Niec
,
M. C.
Nussenzweig
.
2012
.
Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage.
J. Exp. Med.
209
:
1153
1165
.
6
Shortman
,
K.
,
Y.-J.
Liu
.
2002
.
Mouse and human dendritic cell subtypes.
Nat. Rev. Immunol.
2
:
151
161
.
7
Schulz
,
O.
,
E.
Jaensson
,
E. K.
Persson
,
X.
Liu
,
T.
Worbs
,
W. W.
Agace
,
O.
Pabst
.
2009
.
Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions.
J. Exp. Med.
206
:
3101
3114
.
8
Guilliams
,
M.
,
C. A.
Dutertre
,
C. L.
Scott
,
N.
McGovern
,
D.
Sichien
,
S.
Chakarov
,
S.
Van Gassen
,
J.
Chen
,
M.
Poidinger
,
S.
De Prijck
, et al
.
2016
.
Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species.
Immunity
45
:
669
684
.
9
Galibert
,
L.
,
G. S.
Diemer
,
Z.
Liu
,
R. S.
Johnson
,
J. L.
Smith
,
T.
Walzer
,
M. R.
Comeau
,
C. T.
Rauch
,
M. F.
Wolfson
,
R. A.
Sorensen
, et al
.
2005
.
Nectin-like protein 2 defines a subset of T-cell zone dendritic cells and is a ligand for class-I-restricted T-cell-associated molecule.
J. Biol. Chem.
280
:
21955
21964
.
10
De Trez
,
C.
,
K.
Schneider
,
K.
Potter
,
N.
Droin
,
J.
Fulton
,
P. S.
Norris
,
S. W.
Ha
,
Y. X.
Fu
,
T.
Murphy
,
K. M.
Murphy
, et al
.
2008
.
The inhibitory HVEM-BTLA pathway counter regulates lymphotoxin receptor signaling to achieve homeostasis of dendritic cells.
J. Immunol.
180
:
238
248
.
11
Bain
,
C. C.
,
J.
Montgomery
,
C. L.
Scott
,
J. M.
Kel
,
M. J. H.
Girard-Madoux
,
L.
Martens
,
T. F. P.
Zangerle-Murray
,
J.
Ober-Blöbaum
,
D.
Lindenbergh-Kortleve
,
J. N.
Samsom
, et al
.
2017
.
TGFβR signalling controls CD103+CD11b+ dendritic cell development in the intestine.
Nat. Commun.
8
:
620
.
12
Houston
,
S. A.
,
V.
Cerovic
,
C.
Thomson
,
J.
Brewer
,
A. M.
Mowat
,
S.
Milling
.
2016
.
The lymph nodes draining the small intestine and colon are anatomically separate and immunologically distinct.
Mucosal Immunol.
9
:
468
478
.
13
Autengruber
,
A.
,
M.
Gereke
,
G.
Hansen
,
C.
Hennig
,
D.
Bruder
.
2012
.
Impact of enzymatic tissue disintegration on the level of surface molecule expression and immune cell function.
Eur. J. Microbiol. Immunol. (Bp.)
2
:
112
120
.
14
Milling
,
S. W.
,
C.
Jenkins
,
G.
MacPherson
.
2006
.
Collection of lymph-borne dendritic cells in the rat.
Nat. Protoc.
1
:
2263
2270
.
15
Bender
,
A.
,
M.
Sapp
,
G.
Schuler
,
R. M.
Steinman
,
N.
Bhardwaj
.
1996
.
Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood.
J. Immunol. Methods
196
:
121
135
.
16
Dillon
,
S. M.
,
L. M.
Rogers
,
R.
Howe
,
L. A.
Hostetler
,
J.
Buhrman
,
M. D.
McCarter
,
C. C.
Wilson
.
2010
.
Human intestinal lamina propria CD1c+ dendritic cells display an activated phenotype at steady state and produce IL-23 in response to TLR7/8 stimulation.
J. Immunol.
184
:
6612
6621
.
17
Bell
,
S. J.
,
R.
Rigby
,
N.
English
,
S. D.
Mann
,
S. C.
Knight
,
M. A.
Kamm
,
A. J.
Stagg
.
2001
.
Migration and maturation of human colonic dendritic cells.
J. Immunol.
166
:
4958
4967
.
18
Durai
,
V.
,
K. M.
Murphy
.
2016
.
Functions of murine dendritic cells.
Immunity
45
:
719
736
.
19
Loschko
,
J.
,
G. J.
Rieke
,
H. A.
Schreiber
,
M. M.
Meredith
,
K. H.
Yao
,
P.
Guermonprez
,
M. C.
Nussenzweig
.
2016
.
Inducible targeting of cDCs and their subsets in vivo.
J. Immunol. Methods
434
:
32
38
.
20
Murphy
,
T. L.
,
G. E.
Grajales-Reyes
,
X.
Wu
,
R.
Tussiwand
,
C. G.
Briseño
,
A.
Iwata
,
N. M.
Kretzer
,
V.
Durai
,
K. M.
Murphy
.
2016
.
Transcriptional control of dendritic cell development.
Annu. Rev. Immunol.
34
:
93
119
.
21
Satpathy
,
A. T.
,
C. G.
Briseño
,
J. S.
Lee
,
D.
Ng
,
N. A.
Manieri
,
W.
Kc
,
X.
Wu
,
S. R.
Thomas
,
W. L.
Lee
,
M.
Turkoz
, et al
.
2013
.
Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens.
Nat. Immunol.
14
:
937
948
.
22
Tussiwand
,
R.
,
B.
Everts
,
G. E.
Grajales-Reyes
,
N. M.
Kretzer
,
A.
Iwata
,
J.
Bagaitkar
,
X.
Wu
,
R.
Wong
,
D. A.
Anderson
,
T. L.
Murphy
, et al
.
2015
.
Klf4 expression in conventional dendritic cells is required for T helper 2 cell responses.
Immunity
42
:
916
928
.
23
Persson
,
E. K.
,
H.
Uronen-Hansson
,
M.
Semmrich
,
A.
Rivollier
,
K.
Hägerbrand
,
J.
Marsal
,
S.
Gudjonsson
,
U.
Håkansson
,
B.
Reizis
,
K.
Kotarsky
,
W. W.
Agace
.
2013
.
IRF4 transcription-factor-dependent CD103(+)CD11b(+) dendritic cells drive mucosal T helper 17 cell differentiation.
Immunity
38
:
958
969
.
24
Veenbergen
,
S.
,
L. A.
van Berkel
,
M. F.
du Pré
,
J.
He
,
J. J.
Karrich
,
L. M.
Costes
,
F.
Luk
,
Y.
Simons-Oosterhuis
,
H. C.
Raatgeep
,
V.
Cerovic
, et al
.
2016
.
Colonic tolerance develops in the iliac lymph nodes and can be established independent of CD103(+) dendritic cells.
Mucosal Immunol.
9
:
894
906
.
25
Ohnmacht
,
C.
,
A.
Pullner
,
S. B.
King
,
I.
Drexler
,
S.
Meier
,
T.
Brocker
,
D.
Voehringer
.
2009
.
Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity.
J. Exp. Med.
206
:
549
559
.
26
Aliberti
,
J.
,
O.
Schulz
,
D. J.
Pennington
,
H.
Tsujimura
,
C.
Reis e Sousa
,
K.
Ozato
,
A.
Sher
.
2003
.
Essential role for ICSBP in the in vivo development of murine CD8alpha + dendritic cells.
Blood
101
:
305
310
.
27
Luda
,
K. M.
,
T.
Joeris
,
E. K.
Persson
,
A.
Rivollier
,
M.
Demiri
,
K. M.
Sitnik
,
L.
Pool
,
J. B.
Holm
,
F.
Melo-Gonzalez
,
L.
Richter
, et al
.
2016
.
Irf8 transcription-factor-dependent classical dendritic cells are essential for intestinal t cell homeostasis.
Immunity
44
:
860
874
.
28
Esterházy
,
D.
,
J.
Loschko
,
M.
London
,
V.
Jove
,
T. Y.
Oliveira
,
D.
Mucida
.
2016
.
Classical dendritic cells are required for dietary antigen-mediated induction of peripheral T(reg) cells and tolerance.
Nat. Immunol.
17
:
545
555
.
29
Hacker
,
C.
,
R. D.
Kirsch
,
X. S.
Ju
,
T.
Hieronymus
,
T. C.
Gust
,
C.
Kuhl
,
T.
Jorgas
,
S. M.
Kurz
,
S.
Rose-John
,
Y.
Yokota
,
M.
Zenke
.
2003
.
Transcriptional profiling identifies Id2 function in dendritic cell development.
Nat. Immunol.
4
:
380
386
.
30
Kashiwada
,
M.
,
N.-L. L.
Pham
,
L. L.
Pewe
,
J. T.
Harty
,
P. B.
Rothman
.
2011
.
NFIL3/E4BP4 is a key transcription factor for CD8α+ dendritic cell development.
Blood
117
:
6193
6197
.
31
Ohta
,
T.
,
M.
Sugiyama
,
H.
Hemmi
,
C.
Yamazaki
,
S.
Okura
,
I.
Sasaki
,
Y.
Fukuda
,
T.
Orimo
,
K. J.
Ishii
,
K.
Hoshino
, et al
.
2016
.
Crucial roles of XCR1-expressing dendritic cells and the XCR1-XCL1 chemokine axis in intestinal immune homeostasis.
Sci. Rep.
6
:
23505
.
32
Hildner
,
K.
,
B. T.
Edelson
,
W. E.
Purtha
,
M.
Diamond
,
H.
Matsushita
,
M.
Kohyama
,
B.
Calderon
,
B. U.
Schraml
,
E. R.
Unanue
,
M. S.
Diamond
, et al
.
2008
.
Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity.
Science
322
:
1097
1100
.
33
Watchmaker
,
P. B.
,
K.
Lahl
,
M.
Lee
,
D.
Baumjohann
,
J.
Morton
,
S. J.
Kim
,
R.
Zeng
,
A.
Dent
,
K. M.
Ansel
,
B.
Diamond
, et al
.
2014
.
Comparative transcriptional and functional profiling defines conserved programs of intestinal DC differentiation in humans and mice.
Nat. Immunol.
15
:
98
108
.
34
Bogunovic
,
M.
,
F.
Ginhoux
,
J.
Helft
,
L.
Shang
,
D.
Hashimoto
,
M.
Greter
,
K.
Liu
,
C.
Jakubzick
,
M. A.
Ingersoll
,
M.
Leboeuf
, et al
.
2009
.
Origin of the lamina propria dendritic cell network.
Immunity
31
:
513
525
.
35
Greter
,
M.
,
J.
Helft
,
A.
Chow
,
D.
Hashimoto
,
A.
Mortha
,
J.
Agudo-Cantero
,
M.
Bogunovic
,
E. L.
Gautier
,
J.
Miller
,
M.
Leboeuf
, et al
.
2012
.
GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells.
Immunity
36
:
1031
1046
.
36
Schlitzer
,
A.
,
N.
McGovern
,
P.
Teo
,
T.
Zelante
,
K.
Atarashi
,
D.
Low
,
A. W.
Ho
,
P.
See
,
A.
Shin
,
P. S.
Wasan
, et al
.
2013
.
IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses.
Immunity
38
:
970
983
.
37
Scott
,
C. L.
,
Z. M.
Tfp
,
K. S. H.
Beckham
,
G.
Douce
,
A. M.
Mowat
.
2014
.
Signal regulatory protein alpha (SIRPα) regulates the homeostasis of CD103(+) CD11b(+) DCs in the intestinal lamina propria.
Eur. J. Immunol.
44
:
3658
3668
.
38
Saito
,
Y.
,
D.
Respatika
,
S.
Komori
,
K.
Washio
,
T.
Nishimura
,
T.
Kotani
,
Y.
Murata
,
H.
Okazawa
,
H.
Ohnishi
,
Y.
Kaneko
, et al
.
2017
.
SIRPα+ dendritic cells regulate homeostasis of fibroblastic reticular cells via TNF receptor ligands in the adult spleen.
Proc. Natl. Acad. Sci. USA
114
:
E10151
E10160
.
39
Jung
,
S.
,
D.
Unutmaz
,
P.
Wong
,
G.
Sano
,
K.
De los Santos
,
T.
Sparwasser
,
S.
Wu
,
S.
Vuthoori
,
K.
Ko
,
F.
Zavala
, et al
.
2002
.
In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens.
Immunity
17
:
211
220
.
40
Satpathy
,
A. T.
,
W.
Kc
,
J. C.
Albring
,
B. T.
Edelson
,
N. M.
Kretzer
,
D.
Bhattacharya
,
T. L.
Murphy
,
K. M.
Murphy
.
2012
.
Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages.
J. Exp. Med.
209
:
1135
1152
.
41
Piva
,
L.
,
P.
Tetlak
,
C.
Claser
,
K.
Karjalainen
,
L.
Renia
,
C.
Ruedl
.
2012
.
Cutting edge: Clec9A+ dendritic cells mediate the development of experimental cerebral malaria.
J. Immunol.
189
:
1128
1132
.
42
Muzaki
,
A. R.
,
P.
Tetlak
,
J.
Sheng
,
S. C.
Loh
,
Y. A.
Setiagani
,
M.
Poidinger
,
F.
Zolezzi
,
K.
Karjalainen
,
C.
Ruedl
.
2016
.
Intestinal CD103(+)CD11b(-) dendritic cells restrain colitis via IFN-γ-induced anti-inflammatory response in epithelial cells.
Mucosal Immunol.
9
:
336
351
.
43
Yamazaki
,
C.
,
M.
Sugiyama
,
T.
Ohta
,
H.
Hemmi
,
E.
Hamada
,
I.
Sasaki
,
Y.
Fukuda
,
T.
Yano
,
M.
Nobuoka
,
T.
Hirashima
, et al
.
2013
.
Critical roles of a dendritic cell subset expressing a chemokine receptor, XCR1.
J. Immunol.
190
:
6071
6082
.
44
Stranges
,
P. B.
,
J.
Watson
,
C. J.
Cooper
,
C. M.
Choisy-Rossi
,
A. C.
Stonebraker
,
R. A.
Beighton
,
H.
Hartig
,
J. P.
Sundberg
,
S.
Servick
,
G.
Kaufmann
, et al
.
2007
.
Elimination of antigen-presenting cells and autoreactive T cells by Fas contributes to prevention of autoimmunity.
Immunity
26
:
629
641
.
45
Loschko
,
J.
,
H. A.
Schreiber
,
G. J.
Rieke
,
D.
Esterházy
,
M. M.
Meredith
,
V. A.
Pedicord
,
K. H.
Yao
,
S.
Caballero
,
E. G.
Pamer
,
D.
Mucida
,
M. C.
Nussenzweig
.
2016
.
Absence of MHC class II on cDCs results in microbial-dependent intestinal inflammation.
J. Exp. Med.
213
:
517
534
.
46
Schraml
,
B. U.
,
J.
van Blijswijk
,
S.
Zelenay
,
P. G.
Whitney
,
A.
Filby
,
S. E.
Acton
,
N. C.
Rogers
,
N.
Moncaut
,
J. J.
Carvajal
,
C.
Reis e Sousa
.
2013
.
Genetic tracing via DNGR-1 expression history defines dendritic cells as a hematopoietic lineage.
Cell
154
:
843
858
.
47
Mattiuz
,
R.
,
C.
Wohn
,
S.
Ghilas
,
M.
Ambrosini
,
Y. O.
Alexandre
,
C.
Sanchez
,
A.
Fries
,
T.-P.
Vu Manh
,
B.
Malissen
,
M.
Dalod
,
K.
Crozat
.
2018
.
Novel cre-expressing mouse strains permitting to selectively track and edit type 1 conventional dendritic cells facilitate disentangling their complexity in vivo.
Front. Immunol.
9
:
2805
.
48
Welty
,
N. E.
,
C.
Staley
,
N.
Ghilardi
,
M. J.
Sadowsky
,
B. Z.
Igyártó
,
D. H.
Kaplan
.
2013
.
Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism.
J. Exp. Med.
210
:
2011
2024
.
49
Lindquist
,
R. L.
,
G.
Shakhar
,
D.
Dudziak
,
H.
Wardemann
,
T.
Eisenreich
,
M. L.
Dustin
,
M. C.
Nussenzweig
.
2004
.
Visualizing dendritic cell networks in vivo.
Nat. Immunol.
5
:
1243
1250
.
50
Jackson
,
J. T.
,
Y.
Hu
,
R.
Liu
,
F.
Masson
,
A.
D’Amico
,
S.
Carotta
,
A.
Xin
,
M. J.
Camilleri
,
A. M.
Mount
,
A.
Kallies
, et al
.
2011
.
Id2 expression delineates differential checkpoints in the genetic program of CD8α+ and CD103+ dendritic cell lineages.
EMBO J.
30
:
2690
2704
.
51
Mowat
,
A. M.
,
W. W.
Agace
.
2014
.
Regional specialization within the intestinal immune system.
Nat. Rev. Immunol.
14
:
667
685
.
52
Denning
,
T. L.
,
B. A.
Norris
,
O.
Medina-Contreras
,
S.
Manicassamy
,
D.
Geem
,
R.
Madan
,
C. L.
Karp
,
B.
Pulendran
.
2011
.
Functional specializations of intestinal dendritic cell and macrophage subsets that control Th17 and regulatory T cell responses are dependent on the T cell/APC ratio, source of mouse strain, and regional localization.
J. Immunol.
187
:
733
747
.
53
Esterházy
,
D.
,
M. C. C.
Canesso
,
L.
Mesin
,
P. A.
Muller
,
T. B. R.
de Castro
,
A.
Lockhart
,
M.
ElJalby
,
A. M. C.
Faria
,
D.
Mucida
.
2019
.
Compartmentalized gut lymph node drainage dictates adaptive immune responses.
Nature
569
:
126
130
.
54
McDonald
,
K. G.
,
J. S.
McDonough
,
B. K.
Dieckgraefe
,
R. D.
Newberry
.
2010
.
Dendritic cells produce CXCL13 and participate in the development of murine small intestine lymphoid tissues.
Am. J. Pathol.
176
:
2367
2377
.
55
Wilson
,
N. S.
,
D.
El-Sukkari
,
G. T.
Belz
,
C. M.
Smith
,
R. J.
Steptoe
,
W. R.
Heath
,
K.
Shortman
,
J. A.
Villadangos
.
2003
.
Most lymphoid organ dendritic cell types are phenotypically and functionally immature.
Blood
102
:
2187
2194
.
56
Neutra
,
M. R.
,
N. J.
Mantis
,
J. P.
Kraehenbuhl
.
2001
.
Collaboration of epithelial cells with organized mucosal lymphoid tissues.
Nat. Immunol.
2
:
1004
1009
.
57
Iwasaki
,
A.
,
B. L.
Kelsall
.
2000
.
Localization of distinct Peyer’s patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (MIP)-3alpha, MIP-3beta, and secondary lymphoid organ chemokine.
J. Exp. Med.
191
:
1381
1394
.
58
Bonnardel
,
J.
,
C.
Da Silva
,
C.
Wagner
,
R.
Bonifay
,
L.
Chasson
,
M.
Masse
,
E.
Pollet
,
M.
Dalod
,
J. P.
Gorvel
,
H.
Lelouard
.
2017
.
Distribution, location, and transcriptional profile of Peyer’s patch conventional DC subsets at steady state and under TLR7 ligand stimulation.
Mucosal Immunol.
10
:
1412
1430
.
59
Laffont
,
S.
,
K. R.
Siddiqui
,
F.
Powrie
.
2010
.
Intestinal inflammation abrogates the tolerogenic properties of MLN CD103+ dendritic cells.
Eur. J. Immunol.
40
:
1877
1883
.
60
Vicente-Suarez
,
I.
,
A.
Larange
,
C.
Reardon
,
M.
Matho
,
S.
Feau
,
G.
Chodaczek
,
Y.
Park
,
Y.
Obata
,
R.
Gold
,
Y.
Wang-Zhu
, et al
.
2015
.
Unique lamina propria stromal cells imprint the functional phenotype of mucosal dendritic cells.
Mucosal Immunol.
8
:
141
151
.
61
McDonald
,
K. G.
,
M. R.
Leach
,
K. W.
Brooke
,
C.
Wang
,
L. W.
Wheeler
,
E. K.
Hanly
,
C. W.
Rowley
,
M. S.
Levin
,
M.
Wagner
,
E.
Li
,
R. D.
Newberry
.
2012
.
Epithelial expression of the cytosolic retinoid chaperone cellular retinol binding protein II is essential for in vivo imprinting of local gut dendritic cells by lumenal retinoids.
Am. J. Pathol.
180
:
984
997
.
62
Zhang
,
Z.
,
J.
Li
,
W.
Zheng
,
G.
Zhao
,
H.
Zhang
,
X.
Wang
,
Y.
Guo
,
C.
Qin
,
Y.
Shi
.
2016
.
Peripheral lymphoid volume expansion and maintenance are controlled by gut microbiota via raldh+ dendritic cells.
Immunity
44
:
330
342
.
63
Zeng
,
R.
,
M.
Bscheider
,
K.
Lahl
,
M.
Lee
,
E. C.
Butcher
.
2016
.
Generation and transcriptional programming of intestinal dendritic cells: essential role of retinoic acid.
Mucosal Immunol.
9
:
183
193
.
64
Zeng
,
R.
,
C.
Oderup
,
R.
Yuan
,
M.
Lee
,
A.
Habtezion
,
H.
Hadeiba
,
E. C.
Butcher
.
2013
.
Retinoic acid regulates the development of a gut-homing precursor for intestinal dendritic cells.
Mucosal Immunol.
6
:
847
856
.
65
Klebanoff
,
C. A.
,
S. P.
Spencer
,
P.
Torabi-Parizi
,
J. R.
Grainger
,
R.
Roychoudhuri
,
Y.
Ji
,
M.
Sukumar
,
P.
Muranski
,
C. D.
Scott
,
J. A.
Hall
, et al
.
2013
.
Retinoic acid controls the homeostasis of pre-cDC-derived splenic and intestinal dendritic cells.
J. Exp. Med.
210
:
1961
1976
.
66
Tan
,
J.
,
C.
McKenzie
,
P. J.
Vuillermin
,
G.
Goverse
,
C. G.
Vinuesa
,
R. E.
Mebius
,
L.
Macia
,
C. R.
Mackay
.
2016
.
Dietary fiber and bacterial scfa enhance oral tolerance and protect against food allergy through diverse cellular pathways.
Cell Rep.
15
:
2809
2824
.
67
Goverse
,
G.
,
R.
Molenaar
,
L.
Macia
,
J.
Tan
,
M. N.
Erkelens
,
T.
Konijn
,
M.
Knippenberg
,
E. C. L.
Cook
,
D.
Hanekamp
,
M.
Veldhoen
, et al
.
2017
.
Diet-derived short chain fatty acids stimulate intestinal epithelial cells to induce mucosal tolerogenic dendritic cells.
J. Immunol.
198
:
2172
2181
.
68
Iwata
,
M.
,
A.
Hirakiyama
,
Y.
Eshima
,
H.
Kagechika
,
C.
Kato
,
S. Y.
Song
.
2004
.
Retinoic acid imprints gut-homing specificity on T cells.
Immunity
21
:
527
538
.
69
Jaensson-Gyllenbäck
,
E.
,
K.
Kotarsky
,
F.
Zapata
,
E. K.
Persson
,
T. E.
Gundersen
,
R.
Blomhoff
,
W. W.
Agace
.
2011
.
Bile retinoids imprint intestinal CD103+ dendritic cells with the ability to generate gut-tropic T cells.
Mucosal Immunol.
4
:
438
447
.
70
Arpaia
,
N.
,
C.
Campbell
,
X.
Fan
,
S.
Dikiy
,
J.
van der Veeken
,
P.
deRoos
,
H.
Liu
,
J. R.
Cross
,
K.
Pfeffer
,
P. J.
Coffer
,
A. Y.
Rudensky
.
2013
.
Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation.
Nature
504
:
451
455
.
71
Brandtzaeg
,
P.
,
F. E.
Johansen
.
2005
.
Mucosal B cells: phenotypic characteristics, transcriptional regulation, and homing properties.
Immunol. Rev.
206
:
32
63
.
72
Gommerman
,
J. L.
,
O. L.
Rojas
,
J. H.
Fritz
.
2014
.
Re-thinking the functions of IgA(+) plasma cells.
Gut Microbes
5
:
652
662
.
73
Cerutti
,
A.
2008
.
The regulation of IgA class switching.
Nat. Rev. Immunol.
8
:
421
434
.
74
Mora
,
J. R.
,
M.
Iwata
,
B.
Eksteen
,
S. Y.
Song
,
T.
Junt
,
B.
Senman
,
K. L.
Otipoby
,
A.
Yokota
,
H.
Takeuchi
,
P.
Ricciardi-Castagnoli
, et al
.
2006
.
Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells.
Science
314
:
1157
1160
.
75
Reboldi
,
A.
,
T. I.
Arnon
,
L. B.
Rodda
,
A.
Atakilit
,
D.
Sheppard
,
J. G.
Cyster
.
2016
.
IgA production requires B cell interaction with subepithelial dendritic cells in Peyer’s patches.
Science
352
: aaf4822.
76
Ma
,
C. S.
,
S.
Suryani
,
D. T.
Avery
,
A.
Chan
,
R.
Nanan
,
B.
Santner-Nanan
,
E. K.
Deenick
,
S. G.
Tangye
.
2009
.
Early commitment of naïve human CD4(+) T cells to the T follicular helper (T(FH)) cell lineage is induced by IL-12.
Immunol. Cell Biol.
87
:
590
600
.
77
Tsuji
,
M.
,
N.
Komatsu
,
S.
Kawamoto
,
K.
Suzuki
,
O.
Kanagawa
,
T.
Honjo
,
S.
Hori
,
S.
Fagarasan
.
2009
.
Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer’s patches.
Science
323
:
1488
1492
.
78
Kang
,
H. S.
,
R. K.
Chin
,
Y.
Wang
,
P.
Yu
,
J.
Wang
,
K. A.
Newell
,
Y. X.
Fu
.
2002
.
Signaling via LTbetaR on the lamina propria stromal cells of the gut is required for IgA production.
Nat. Immunol.
3
:
576
582
.
79
Macpherson
,
A. J.
,
D.
Gatto
,
E.
Sainsbury
,
G. R.
Harriman
,
H.
Hengartner
,
R. M.
Zinkernagel
.
2000
.
A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria.
Science
288
:
2222
2226
.
80
Tsuji
,
M.
,
K.
Suzuki
,
H.
Kitamura
,
M.
Maruya
,
K.
Kinoshita
,
I. I.
Ivanov
,
K.
Itoh
,
D. R.
Littman
,
S.
Fagarasan
.
2008
.
Requirement for lymphoid tissue-inducer cells in isolated follicle formation and T cell-independent immunoglobulin A generation in the gut.
Immunity
29
:
261
271
.
81
Bergqvist
,
P.
,
A.
Stensson
,
N. Y.
Lycke
,
M.
Bemark
.
2010
.
T cell-independent IgA class switch recombination is restricted to the GALT and occurs prior to manifest germinal center formation.
J. Immunol.
184
:
3545
3553
.
82
Suzuki
,
K.
,
M.
Maruya
,
S.
Kawamoto
,
K.
Sitnik
,
H.
Kitamura
,
W. W.
Agace
,
S.
Fagarasan
.
2010
.
The sensing of environmental stimuli by follicular dendritic cells promotes immunoglobulin A generation in the gut.
Immunity
33
:
71
83
.
83
Sun
,
T.
,
O. L.
Rojas
,
C.
Li
,
D. J.
Philpott
,
J. L.
Gommerman
.
2016
.
Hematopoietic LTβR deficiency results in skewed T cell cytokine profiles during a mucosal viral infection.
J. Leukoc. Biol.
100
:
103
110
.
84
Sun
,
T.
,
O. L.
Rojas
,
C.
Li
,
L. A.
Ward
,
D. J.
Philpott
,
J. L.
Gommerman
.
2017
.
Intestinal Batf3-dependent dendritic cells are required for optimal antiviral T-cell responses in adult and neonatal mice.
Mucosal Immunol.
10
:
775
788
.
85
Li
,
C.
,
E.
Lam
,
C.
Perez-Shibayama
,
L. A.
Ward
,
J.
Zhang
,
D.
Lee
,
A.
Nguyen
,
M.
Ahmed
,
E.
Brownlie
,
K. V.
Korneev
, et al
.
Early-life programming of mesenteric lymph node stromal cell identity by the lymphotoxin pathway regulates adult mucosal immunity.
Sci. Immunol.
DOI: 10.1126/sciimmunol.aax1027.
86
Tezuka
,
H.
,
Y.
Abe
,
J.
Asano
,
T.
Sato
,
J.
Liu
,
M.
Iwata
,
T.
Ohteki
.
2011
.
Prominent role for plasmacytoid dendritic cells in mucosal T cell-independent IgA induction.
Immunity
34
:
247
257
.
87
Deal
,
E. M.
,
K.
Lahl
,
C. F.
Narváez
,
E. C.
Butcher
,
H. B.
Greenberg
.
2013
.
Plasmacytoid dendritic cells promote rotavirus-induced human and murine B cell responses.
J. Clin. Invest.
123
:
2464
2474
.
88
Scott
,
C. L.
,
A. M.
Aumeunier
,
A. M.
Mowat
.
2011
.
Intestinal CD103+ dendritic cells: master regulators of tolerance?
Trends Immunol.
32
:
412
419
.
89
Huang
,
F. P.
,
N.
Platt
,
M.
Wykes
,
J. R.
Major
,
T. J.
Powell
,
C. D.
Jenkins
,
G. G.
MacPherson
.
2000
.
A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes.
J. Exp. Med.
191
:
435
444
.
90
Macpherson
,
A. J.
,
T.
Uhr
.
2004
.
Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria.
Science
303
:
1662
1665
.
91
Pezoldt
,
J.
,
M.
Pasztoi
,
M.
Zou
,
C.
Wiechers
,
M.
Beckstette
,
G. R.
Thierry
,
E.
Vafadarnejad
,
S.
Floess
,
P.
Arampatzi
,
M.
Buettner
, et al
.
2018
.
Neonatally imprinted stromal cell subsets induce tolerogenic dendritic cells in mesenteric lymph nodes.
Nat. Commun.
9
:
3903
.
92
Travis
,
M. A.
,
B.
Reizis
,
A. C.
Melton
,
E.
Masteller
,
Q.
Tang
,
J. M.
Proctor
,
Y.
Wang
,
X.
Bernstein
,
X.
Huang
,
L. F.
Reichardt
, et al
.
2007
.
Loss of integrin alpha(v)beta8 on dendritic cells causes autoimmunity and colitis in mice.
Nature
449
:
361
365
.
93
Coombes
,
J. L.
,
K. R.
Siddiqui
,
C. V.
Arancibia-Cárcamo
,
J.
Hall
,
C. M.
Sun
,
Y.
Belkaid
,
F.
Powrie
.
2007
.
A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism.
J. Exp. Med.
204
:
1757
1764
.
94
Mucida
,
D.
,
Y.
Park
,
G.
Kim
,
O.
Turovskaya
,
I.
Scott
,
M.
Kronenberg
,
H.
Cheroutre
.
2007
.
Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid.
Science
317
:
256
260
.
95
Spadoni
,
I.
,
I. D.
Iliev
,
G.
Rossi
,
M.
Rescigno
.
2012
.
Dendritic cells produce TSLP that limits the differentiation of Th17 cells, fosters Treg development, and protects against colitis.
Mucosal Immunol.
5
:
184
193
.
96
Huang
,
G.
,
Y.
Wang
,
H.
Chi
.
2013
.
Control of T cell fates and immune tolerance by p38α signaling in mucosal CD103+ dendritic cells.
J. Immunol.
191
:
650
659
.
97
Manicassamy
,
S.
,
B.
Reizis
,
R.
Ravindran
,
H.
Nakaya
,
R. M.
Salazar-Gonzalez
,
Y. C.
Wang
,
B.
Pulendran
.
2010
.
Activation of beta-catenin in dendritic cells regulates immunity versus tolerance in the intestine.
Science
329
:
849
853
.
98
Shan
,
M.
,
M.
Gentile
,
J. R.
Yeiser
,
A. C.
Walland
,
V. U.
Bornstein
,
K.
Chen
,
B.
He
,
L.
Cassis
,
A.
Bigas
,
M.
Cols
, et al
.
2013
.
Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals.
Science
342
:
447
453
.
99
Han
,
D.
,
M. C.
Walsh
,
P. J.
Cejas
,
N. N.
Dang
,
Y. F.
Kim
,
J.
Kim
,
L.
Charrier-Hisamuddin
,
L.
Chau
,
Q.
Zhang
,
K.
Bittinger
, et al
.
2013
.
Dendritic cell expression of the signaling molecule TRAF6 is critical for gut microbiota-dependent immune tolerance.
Immunity
38
:
1211
1222
.
100
Ramalingam
,
R.
,
C. B.
Larmonier
,
R. D.
Thurston
,
M. T.
Midura-Kiela
,
S. G.
Zheng
,
F. K.
Ghishan
,
P. R.
Kiela
.
2012
.
Dendritic cell-specific disruption of TGF-β receptor II leads to altered regulatory T cell phenotype and spontaneous multiorgan autoimmunity.
J. Immunol.
189
:
3878
3893
.
101
Shiokawa
,
A.
,
R.
Kotaki
,
T.
Takano
,
H.
Nakajima-Adachi
,
S.
Hachimura
.
2017
.
Mesenteric lymph node CD11b- CD103+ PD-L1High dendritic cells highly induce regulatory T cells.
Immunology
152
:
52
64
.
102
Mazmanian
,
S. K.
,
C. H.
Liu
,
A. O.
Tzianabos
,
D. L.
Kasper
.
2005
.
An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system.
Cell
122
:
107
118
.
103
Manicassamy
,
S.
,
R.
Ravindran
,
J.
Deng
,
H.
Oluoch
,
T. L.
Denning
,
S. P.
Kasturi
,
K. M.
Rosenthal
,
B. D.
Evavold
,
B.
Pulendran
.
2009
.
Toll-like receptor 2-dependent induction of vitamin A-metabolizing enzymes in dendritic cells promotes T regulatory responses and inhibits autoimmunity.
Nat. Med.
15
:
401
409
.
104
Mortha
,
A.
,
A.
Chudnovskiy
,
D.
Hashimoto
,
M.
Bogunovic
,
S. P.
Spencer
,
Y.
Belkaid
,
M.
Merad
.
2014
.
Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis.
Science
343
: 1249288.
105
Steinman
,
R. M.
,
D.
Hawiger
,
M. C.
Nussenzweig
.
2003
.
Tolerogenic dendritic cells.
Annu. Rev. Immunol.
21
:
685
711
.
106
Franco
,
M. A.
,
H. B.
Greenberg
.
1995
.
Role of B cells and cytotoxic T lymphocytes in clearance of and immunity to rotavirus infection in mice.
J. Virol.
69
:
7800
7806
.
107
Tomov
,
V. T.
,
L. C.
Osborne
,
D. V.
Dolfi
,
G. F.
Sonnenberg
,
L. A.
Monticelli
,
K.
Mansfield
,
H. W.
Virgin
,
D.
Artis
,
E. J.
Wherry
.
2013
.
Persistent enteric murine norovirus infection is associated with functionally suboptimal virus-specific CD8 T cell responses.
J. Virol.
87
:
7015
7031
.
108
Simmons
,
C. P.
,
N. S.
Goncalves
,
M.
Ghaem-Maghami
,
M.
Bajaj-Elliott
,
S.
Clare
,
B.
Neves
,
G.
Frankel
,
G.
Dougan
,
T. T.
MacDonald
.
2002
.
Impaired resistance and enhanced pathology during infection with a noninvasive, attaching-effacing enteric bacterial pathogen, Citrobacter rodentium, in mice lacking IL-12 or IFN-gamma.
J. Immunol.
168
:
1804
1812
.
109
Denkers
,
E. Y.
,
R. T.
Gazzinelli
.
1998
.
Regulation and function of T-cell-mediated immunity during Toxoplasma gondii infection.
Clin. Microbiol. Rev.
11
:
569
588
.
110
Chudnovskiy
,
A.
,
A.
Mortha
,
V.
Kana
,
A.
Kennard
,
J. D.
Ramirez
,
A.
Rahman
,
R.
Remark
,
I.
Mogno
,
R.
Ng
,
S.
Gnjatic
, et al
.
2016
.
Host-protozoan interactions protect from mucosal infections through activation of the inflammasome.
Cell
167
:
444
456.e14
.
111
Scanga
,
C. A.
,
J.
Aliberti
,
D.
Jankovic
,
F.
Tilloy
,
S.
Bennouna
,
E. Y.
Denkers
,
R.
Medzhitov
,
A.
Sher
.
2002
.
Cutting edge: MyD88 is required for resistance to Toxoplasma gondii infection and regulates parasite-induced IL-12 production by dendritic cells.
J. Immunol.
168
:
5997
6001
.
112
Giese
,
N. A.
,
L.
Gabriele
,
T. M.
Doherty
,
D. M.
Klinman
,
L.
Tadesse-Heath
,
C.
Contursi
,
S. L.
Epstein
,
H. C.
Morse
III
.
1997
.
Interferon (IFN) consensus sequence-binding protein, a transcription factor of the IFN regulatory factor family, regulates immune responses in vivo through control of interleukin 12 expression.
J. Exp. Med.
186
:
1535
1546
.
113
Schiavoni
,
G.
,
F.
Mattei
,
P.
Sestili
,
P.
Borghi
,
M.
Venditti
,
H. C.
Morse
III
,
F.
Belardelli
,
L.
Gabriele
.
2002
.
ICSBP is essential for the development of mouse type I interferon-producing cells and for the generation and activation of CD8alpha(+) dendritic cells.
J. Exp. Med.
196
:
1415
1425
.
114
Krummen
,
M.
,
S.
Balkow
,
L.
Shen
,
S.
Heinz
,
C.
Loquai
,
H. C.
Probst
,
S.
Grabbe
.
2010
.
Release of IL-12 by dendritic cells activated by TLR ligation is dependent on MyD88 signaling, whereas TRIF signaling is indispensable for TLR synergy.
J. Leukoc. Biol.
88
:
189
199
.
115
Schulz
,
O.
,
A. D.
Edwards
,
M.
Schito
,
J.
Aliberti
,
S.
Manickasingham
,
A.
Sher
,
C.
Reis e Sousa
.
2000
.
CD40 triggering of heterodimeric IL-12 p70 production by dendritic cells in vivo requires a microbial priming signal.
Immunity
13
:
453
462
.
116
Baker
,
K.
,
T.
Rath
,
M. B.
Flak
,
J. C.
Arthur
,
Z.
Chen
,
J. N.
Glickman
,
I.
Zlobec
,
E.
Karamitopoulou
,
M. D.
Stachler
,
R. D.
Odze
, et al
.
2013
.
Neonatal Fc receptor expression in dendritic cells mediates protective immunity against colorectal cancer.
Immunity
39
:
1095
1107
.
117
Kusunoki
,
T.
,
M.
Sugai
,
T.
Katakai
,
Y.
Omatsu
,
T.
Iyoda
,
K.
Inaba
,
T.
Nakahata
,
A.
Shimizu
,
Y.
Yokota
.
2003
.
TH2 dominance and defective development of a CD8+ dendritic cell subset in Id2-deficient mice.
J. Allergy Clin. Immunol.
111
:
136
142
.
118
Pulendran
,
B.
,
J. L.
Smith
,
G.
Caspary
,
K.
Brasel
,
D.
Pettit
,
E.
Maraskovsky
,
C. R.
Maliszewski
.
1999
.
Distinct dendritic cell subsets differentially regulate the class of immune response in vivo.
Proc. Natl. Acad. Sci. USA
96
:
1036
1041
.
119
Phythian-Adams
,
A. T.
,
P. C.
Cook
,
R. J.
Lundie
,
L. H.
Jones
,
K. A.
Smith
,
T. A.
Barr
,
K.
Hochweller
,
S. M.
Anderton
,
G. J.
Hämmerling
,
R. M.
Maizels
,
A. S.
MacDonald
.
2010
.
CD11c depletion severely disrupts Th2 induction and development in vivo.
J. Exp. Med.
207
:
2089
2096
.
120
Gao
,
Y.
,
S. A.
Nish
,
R.
Jiang
,
L.
Hou
,
P.
Licona-Limón
,
J. S.
Weinstein
,
H.
Zhao
,
R.
Medzhitov
.
2013
.
Control of T helper 2 responses by transcription factor IRF4-dependent dendritic cells.
Immunity
39
:
722
732
.
121
Mayer
,
J. U.
,
M.
Demiri
,
W. W.
Agace
,
A. S.
MacDonald
,
M.
Svensson-Frej
,
S. W.
Milling
.
2017
.
Different populations of CD11b+ dendritic cells drive Th2 responses in the small intestine and colon.
Nat. Commun.
8
:
15820
.
122
Carlens
,
J.
,
B.
Wahl
,
M.
Ballmaier
,
S.
Bulfone-Paus
,
R.
Förster
,
O.
Pabst
.
2009
.
Common gamma-chain-dependent signals confer selective survival of eosinophils in the murine small intestine.
J. Immunol.
183
:
5600
5607
.
123
Chu
,
D. K.
,
R.
Jimenez-Saiz
,
C. P.
Verschoor
,
T. D.
Walker
,
S.
Goncharova
,
A.
Llop-Guevara
,
P.
Shen
,
M. E.
Gordon
,
N. G.
Barra
,
J. D.
Bassett
, et al
.
2014
.
Indigenous enteric eosinophils control DCs to initiate a primary Th2 immune response in vivo.
J. Exp. Med.
211
:
1657
1672
.
124
Halim
,
T. Y.
,
C. A.
Steer
,
L.
Mathä
,
M. J.
Gold
,
I.
Martinez-Gonzalez
,
K. M.
McNagny
,
A. N.
McKenzie
,
F.
Takei
.
2014
.
Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation.
Immunity
40
:
425
435
.
125
Halim
,
T. Y.
,
Y. Y.
Hwang
,
S. T.
Scanlon
,
H.
Zaghouani
,
N.
Garbi
,
P. G.
Fallon
,
A. N.
McKenzie
.
2016
.
Group 2 innate lymphoid cells license dendritic cells to potentiate memory TH2 cell responses.
Nat. Immunol.
17
:
57
64
.
126
Yokota-Nakatsuma
,
A.
,
H.
Takeuchi
,
Y.
Ohoka
,
C.
Kato
,
S. Y.
Song
,
T.
Hoshino
,
H.
Yagita
,
T.
Ohteki
,
M.
Iwata
.
2014
.
Retinoic acid prevents mesenteric lymph node dendritic cells from inducing IL-13-producing inflammatory Th2 cells.
Mucosal Immunol.
7
:
786
801
.
127
Shaw
,
M. H.
,
N.
Kamada
,
Y. G.
Kim
,
G.
Núñez
.
2012
.
Microbiota-induced IL-1β, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine.
J. Exp. Med.
209
:
251
258
.
128
Ivanov
,
I. I.
,
K.
Atarashi
,
N.
Manel
,
E. L.
Brodie
,
T.
Shima
,
U.
Karaoz
,
D.
Wei
,
K. C.
Goldfarb
,
C. A.
Santee
,
S. V.
Lynch
, et al
.
2009
.
Induction of intestinal Th17 cells by segmented filamentous bacteria.
Cell
139
:
485
498
.
129
Goto
,
Y.
,
C.
Panea
,
G.
Nakato
,
A.
Cebula
,
C.
Lee
,
M. G.
Diez
,
T. M.
Laufer
,
L.
Ignatowicz
,
I. I.
Ivanov
.
2014
.
Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation.
Immunity
40
:
594
607
.
130
Panea
,
C.
,
A. M.
Farkas
,
Y.
Goto
,
S.
Abdollahi-Roodsaz
,
C.
Lee
,
B.
Koscsó
,
K.
Gowda
,
T. M.
Hohl
,
M.
Bogunovic
,
I. I.
Ivanov
.
2015
.
Intestinal monocyte-derived macrophages control commensal-specific th17 responses.
Cell Rep.
12
:
1314
1324
.
131
Conti
,
H. R.
,
F.
Shen
,
N.
Nayyar
,
E.
Stocum
,
J. N.
Sun
,
M. J.
Lindemann
,
A. W.
Ho
,
J. H.
Hai
,
J. J.
Yu
,
J. W.
Jung
, et al
.
2009
.
Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis.
J. Exp. Med.
206
:
299
311
.
132
Raffatellu
,
M.
,
R. L.
Santos
,
D. E.
Verhoeven
,
M. D.
George
,
R. P.
Wilson
,
S. E.
Winter
,
I.
Godinez
,
S.
Sankaran
,
T. A.
Paixao
,
M. A.
Gordon
, et al
.
2008
.
Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut.
Nat. Med.
14
:
421
428
.
133
Ishigame
,
H.
,
S.
Kakuta
,
T.
Nagai
,
M.
Kadoki
,
A.
Nambu
,
Y.
Komiyama
,
N.
Fujikado
,
Y.
Tanahashi
,
A.
Akitsu
,
H.
Kotaki
, et al
.
2009
.
Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses.
Immunity
30
:
108
119
.
134
DePaolo
,
R. W.
,
K.
Kamdar
,
S.
Khakpour
,
Y.
Sugiura
,
W.
Wang
,
B.
Jabri
.
2012
.
A specific role for TLR1 in protective T(H)17 immunity during mucosal infection.
J. Exp. Med.
209
:
1437
1444
.
135
Yang
,
L.
,
D. E.
Anderson
,
C.
Baecher-Allan
,
W. D.
Hastings
,
E.
Bettelli
,
M.
Oukka
,
V. K.
Kuchroo
,
D. A.
Hafler
.
2008
.
IL-21 and TGF-beta are required for differentiation of human T(H)17 cells.
Nature
454
:
350
352
.
136
Maloy
,
K. J.
,
M. C.
Kullberg
.
2008
.
IL-23 and Th17 cytokines in intestinal homeostasis.
Mucosal Immunol.
1
:
339
349
.
137
Scott
,
C. L.
,
C. C.
Bain
,
P. B.
Wright
,
D.
Sichien
,
K.
Kotarsky
,
E. K.
Persson
,
K.
Luda
,
M.
Guilliams
,
B. N.
Lambrecht
,
W. W.
Agace
, et al
.
2015
.
CCR2(+)CD103(-) intestinal dendritic cells develop from DC-committed precursors and induce interleukin-17 production by T cells.
Mucosal Immunol.
8
:
327
339
.
138
Cerovic
,
V.
,
S. A.
Houston
,
C. L.
Scott
,
A.
Aumeunier
,
U.
Yrlid
,
A. M.
Mowat
,
S. W.
Milling
.
2013
.
Intestinal CD103(-) dendritic cells migrate in lymph and prime effector T cells.
Mucosal Immunol.
6
:
104
113
.
139
Lewis
,
K. L.
,
M. L.
Caton
,
M.
Bogunovic
,
M.
Greter
,
L. T.
Grajkowska
,
D.
Ng
,
A.
Klinakis
,
I. F.
Charo
,
S.
Jung
,
J. L.
Gommerman
, et al
.
2011
.
Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine.
Immunity
35
:
780
791
.
140
Liang
,
J.
,
H. I.
Huang
,
F. P.
Benzatti
,
A. B.
Karlsson
,
J. J.
Zhang
,
N.
Youssef
,
A.
Ma
,
L. P.
Hale
,
G. E.
Hammer
.
2016
.
Inflammatory th1 and th17 in the intestine are each driven by functionally specialized dendritic cells with distinct requirements for myd88.
Cell Rep.
17
:
1330
1343
.
141
Pavli
,
P.
,
D. A.
Hume
,
E.
Van De Pol
,
W. F.
Doe
.
1993
.
Dendritic cells, the major antigen-presenting cells of the human colonic lamina propria.
Immunology
78
:
132
141
.
142
Jaensson
,
E.
,
H.
Uronen-Hansson
,
O.
Pabst
,
B.
Eksteen
,
J.
Tian
,
J. L.
Coombes
,
P. L.
Berg
,
T.
Davidsson
,
F.
Powrie
,
B.
Johansson-Lindbom
,
W. W.
Agace
.
2008
.
Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans.
J. Exp. Med.
205
:
2139
2149
.
143
de Souza
,
H. S. P.
,
C.
Fiocchi
.
2016
.
Immunopathogenesis of IBD: current state of the art.
Nat. Rev. Gastroenterol. Hepatol.
13
:
13
27
.
144
Hart
,
A. L.
,
H. O.
Al-Hassi
,
R. J.
Rigby
,
S. J.
Bell
,
A. V.
Emmanuel
,
S. C.
Knight
,
M. A.
Kamm
,
A. J.
Stagg
.
2005
.
Characteristics of intestinal dendritic cells in inflammatory bowel diseases.
Gastroenterology
129
:
50
65
.
145
Sakuraba
,
A.
,
T.
Sato
,
N.
Kamada
,
M.
Kitazume
,
A.
Sugita
,
T.
Hibi
.
2009
.
Th1/Th17 immune response is induced by mesenteric lymph node dendritic cells in Crohn’s disease.
Gastroenterology
137
:
1736
1745
.
146
Magnusson
,
M. K.
,
S. F.
Brynjólfsson
,
A.
Dige
,
H.
Uronen-Hansson
,
L. G.
Börjesson
,
J. L.
Bengtsson
,
S.
Gudjonsson
,
L.
Öhman
,
J.
Agnholt
,
H.
Sjövall
, et al
.
2016
.
Macrophage and dendritic cell subsets in IBD: ALDH+ cells are reduced in colon tissue of patients with ulcerative colitis regardless of inflammation.
Mucosal Immunol.
9
:
171
182
.
147
Peyrin-Biroulet
,
L.
,
M.
Chamaillard
,
F.
Gonzalez
,
E.
Beclin
,
C.
Decourcelle
,
L.
Antunes
,
J.
Gay
,
C.
Neut
,
J.-F.
Colombel
,
P.
Desreumaux
.
2007
.
Mesenteric fat in Crohn’s disease: a pathogenetic hallmark or an innocent bystander?
Gut
56
:
577
583
.
148
Al-Hassi
,
H. O.
,
D.
Bernardo
,
A. U.
Murugananthan
,
E. R.
Mann
,
N. R.
English
,
A.
Jones
,
M. A.
Kamm
,
N.
Arebi
,
A. L.
Hart
,
A. I.
Blakemore
, et al
.
2013
.
A mechanistic role for leptin in human dendritic cell migration: differences between ileum and colon in health and Crohn’s disease.
Mucosal Immunol.
6
:
751
761
.
149
Salim
,
S. Y.
,
M. A.
Silva
,
Å. V.
Keita
,
M.
Larsson
,
P.
Andersson
,
K.-E.
Magnusson
,
M. H.
Perdue
,
J. D.
Söderholm
.
2009
.
CD83+CCR7- dendritic cells accumulate in the subepithelial dome and internalize translocated Escherichia coli HB101 in the Peyer’s patches of ileal Crohn’s disease.
Am. J. Pathol.
174
:
82
90
.
150
Johansson-Lindbom
,
B.
,
M.
Svensson
,
O.
Pabst
,
C.
Palmqvist
,
G.
Marquez
,
R.
Förster
,
W. W.
Agace
.
2005
.
Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing.
J. Exp. Med.
202
:
1063
1073
.
151
Flores-Langarica
,
A.
,
J. L.
Marshall
,
J.
Hitchcock
,
C.
Cook
,
J.
Jobanputra
,
S.
Bobat
,
E. A.
Ross
,
R. E.
Coughlan
,
I. R.
Henderson
,
S.
Uematsu
, et al
.
2012
.
Systemic flagellin immunization stimulates mucosal CD103+ dendritic cells and drives Foxp3+ regulatory T cell and IgA responses in the mesenteric lymph node.
J. Immunol.
189
:
5745
5754
.
152
Tan
,
X.
,
J. L.
Sande
,
J. S.
Pufnock
,
J. N.
Blattman
,
P. D.
Greenberg
.
2011
.
Retinoic acid as a vaccine adjuvant enhances CD8+ T cell response and mucosal protection from viral challenge.
J. Virol.
85
:
8316
8327
.
153
Anjuère
,
F.
,
C.
Luci
,
M.
Lebens
,
D.
Rousseau
,
C.
Hervouet
,
G.
Milon
,
J.
Holmgren
,
C.
Ardavin
,
C.
Czerkinsky
.
2004
.
In vivo adjuvant-induced mobilization and maturation of gut dendritic cells after oral administration of cholera toxin.
J. Immunol.
173
:
5103
5111
.
154
Lantier
,
L.
,
S.
Lacroix-Lamandé
,
L.
Potiron
,
C.
Metton
,
F.
Drouet
,
W.
Guesdon
,
A.
Gnahoui-David
,
Y.
Le Vern
,
E.
Deriaud
,
A.
Fenis
, et al
.
2013
.
Intestinal CD103+ dendritic cells are key players in the innate immune control of Cryptosporidium parvum infection in neonatal mice.
PLoS Pathog.
9
: e1003801.

The authors have no financial conflicts of interest.