Mature T cell lymphomas are heterogeneous neoplasms that are aggressive and resistant to treatment. Many of these cancers retain immunological properties of their cell of origin. They express cytokines, cytotoxic enzymes, and cell surface ligands normally induced by TCR signaling in untransformed T cells. Until recently, their molecular mechanisms were unclear. Recently, high-dimensional studies have transformed our understanding of their cellular and genetic characteristics. Somatic mutations in the TCR signaling pathway drive lymphomagenesis by disrupting autoinhibitory domains, increasing affinity to ligands, and/or inducing TCR-independent signaling. Collectively, most of these mutations augment signaling pathways downstream of the TCR. Emerging data suggest that these mutations not only drive proliferation but also determine lymphoma immunophenotypes. For example, RHOA mutations are sufficient to induce disease-relevant CD4+ T follicular helper cell phenotypes. In this review, we describe how mutations in the TCR signaling pathway elucidate lymphoma pathophysiology but also provide insights into broader T cell biology.

Mature T cell lymphomas (TCLs) are a heterogeneous group of aggressive and poorly understood neoplasms (1). Broadly, there are >30 types distinguished by cell of origin, clinical presentation, and molecular markers. TCLs can originate from lymph nodes or from extranodal tissue, such as the skin or the gastrointestinal tract (2). Most TCLs originate from memory CD4+ T cells and have features of CD4+ T cell effector states (3, 4). For example, angioimmunoblastic TCLs (AITLs) have features of T follicular helper (Tfh) cells (5); anaplastic large cell lymphomas (ALCLs) may have features of TH17 cells (6); adult T cell leukemia/lymphoma (ATL) have features of regulatory T cells (Tregs) (7); and peripheral TCL (PTCL) not otherwise specified (PTCL-NOS) may have features of TH1 or TH2 cells (8). Extranodal TCLs, such as cutaneous TCLs, are thought to arise from tissue-resident memory cells (9). Less commonly, lymphomas are derived from cytotoxic T cells, such as γδ T cells and CD8+ T cells (10). For the sake of brevity, we do not review the clinical aspects required to diagnose and/or treat these entities in full detail. For more information, please see the review by Cortés and Palomero (11).

Poor survival outcomes in TCLs are partly linked to an incomplete understanding of their disease biology. Recently, high-dimensional omics have provided foundational insights into their pathophysiology. Although our understanding of the circuitry remains incomplete, most TCLs harbor recurrent mutations in the TCR signaling pathway. These likely contribute to disease pathophysiology by promoting proliferation and by altering the effector molecules expressed by the malignant T cell. These immunologically active molecules are clinically relevant, as they contribute to disease phenotypes. For instance, cytotoxic TCLs produce cytotoxic enzymes that lead to ulcerated tumors (12). In this review, we describe the recurrent mutations in the TCR signaling pathway and their effects on protein structure, signaling, and immunophenotypes.

The TCR complex contains two TCR chains, six CD3 chains, and either a CD4 or CD8 coreceptor. There are four TCR genes in humans (α, β, γ, and δ) that form heterodimers. The CD3 complex is composed of γ, δ, ε, and ζ subunits containing cytosolic ITAMs that mediate intracellular signals. Noncovalent hydrophobic interactions associate the TCR heterodimer with the CD3 complex (13).

Ags are presented by nucleated or APCs on MHC class I or class II, respectively. TCR ligands are MHC molecules containing a peptide in the binding groove (14). Engagement of the TCR/MHC complex with sufficient affinity activates a series of protein tyrosine kinases (PTKs). LCK and FYN are Src-family PTKs that contain an Src homology 4 (SH4) lipid attachment domain, SH3, SH2, and tyrosine kinase (TK) domain (1517). Upon TCR engagement, LCK is recruited to the immune synapse and subsequently phosphorylates the TCR CD3-associated ITAMs to recruit another PTK, ZAP-70, and to initiate signal transduction (16). FYN and IL2-inducible T-cell kinase (ITK) are subject to gain-of-function point mutations and translocations in TCLs. These proximal PTKs activate scaffolding proteins (e.g., LAT, GADS, and SLP-76) that recruit and activate downstream enzymes such as phospholipase C (PLCγ1), VAV1, and RHOA. Signals converge at hubs such as the caspase recruitment domain (CARD) family member 11 (CARD11)/BCL10/MALT1 (CBM) complex and activate downstream NFAT, AP-1, NF-κB, and mammalian target of rapamycin (mTOR) signaling pathways (1820). These pathways mediate multiple aspects of TCR-dependent biology, including both T cell proliferation and production of proproliferative cytokines such as IL-2 (21). Broadly, most TCR mutations in lymphomas activate one or more of the signaling pathways downstream of the TCR, for example, the NFAT, AP-1, and NF-κB pathways (Fig. 1).

FIGURE 1.

TCR signaling pathway members and frequency of single-nucleotide variants and copy-number variants in AITL, ATL, CTCL, and PTCL-NOS. T cell signaling pathway members discussed previously are shown. Proximal PTKs activate scaffolding proteins (e.g., LAT, GADS, and SLP-76) that recruit and activate downstream enzymes such as PLCγ1, VAV1, and RHOA. Signals converge at hubs such as the CARD11/BCL10/MALT1 (CBM) complex and activate downstream NFAT, AP-1, NF-κB, and mammalian target of rapamycin (mTOR) signaling pathways. A red border signifies genes with oncogenic mutations described above. A blue border denotes a tumor suppressor role in TCLs. The single-nucleotide variant and copy-number variant frequencies in a cohort of AITL, ATL, CTCL, and PTCL-NOS (including Tfh-PTCL) samples as previously described are shown (24, 28, 29, 40, 60, 62, 63, 95). Red indicates AITL yellow indicates ATL, blue indicates CTCL, and purple indicates PTCL-NOS. The single-nucleotide variant frequency is displayed for AITL, ATL, CTCL, and PTCL-NOS in the first row in darker color. The copy-number variant frequency is displayed for ATL, CTCL, and PTCL-NOS in the second row in lighter color.

FIGURE 1.

TCR signaling pathway members and frequency of single-nucleotide variants and copy-number variants in AITL, ATL, CTCL, and PTCL-NOS. T cell signaling pathway members discussed previously are shown. Proximal PTKs activate scaffolding proteins (e.g., LAT, GADS, and SLP-76) that recruit and activate downstream enzymes such as PLCγ1, VAV1, and RHOA. Signals converge at hubs such as the CARD11/BCL10/MALT1 (CBM) complex and activate downstream NFAT, AP-1, NF-κB, and mammalian target of rapamycin (mTOR) signaling pathways. A red border signifies genes with oncogenic mutations described above. A blue border denotes a tumor suppressor role in TCLs. The single-nucleotide variant and copy-number variant frequencies in a cohort of AITL, ATL, CTCL, and PTCL-NOS (including Tfh-PTCL) samples as previously described are shown (24, 28, 29, 40, 60, 62, 63, 95). Red indicates AITL yellow indicates ATL, blue indicates CTCL, and purple indicates PTCL-NOS. The single-nucleotide variant frequency is displayed for AITL, ATL, CTCL, and PTCL-NOS in the first row in darker color. The copy-number variant frequency is displayed for ATL, CTCL, and PTCL-NOS in the second row in lighter color.

Close modal

FYN contributes to proximal TCR signaling by phosphorylating ZAP70 and other substrates (22, 23). It is kept in an inactive basal state by C-terminal Src kinase (CSK), which phosphorylates FYN at the C terminus p.Y531, providing a phosphotyrosine to bind to the FYN SH2 domain. The SH3 domain binds the linker between the SH2 and kinase domain; altogether, these interactions restrict the movement of the kinase domain, inhibiting catalytic activity (2426). Sequential biochemical interactions disentangle the inhibitory domains from the kinase domain during TCR signaling (27). For example, a conserved tryptophan between the linker and kinase domain interacts with a hydrophobic region in the αC helix and the residue rotates out of the helix during activation (27). FYN is mutated in 3–4% of AITL, ATL, and PTCL-NOS (Fig. 1) (24, 28, 29). Mutations that cluster in the SH3, SH2, and C terminus domains are predicted to prevent the inhibitory intramolecular interactions between 1) the C terminus and the SH2 domain or 2) between the SH3 domain and linker region (Fig. 2A) (24, 28). For example, SH2 domain mutations (p.L174R, p.R176C) prevent its binding to the phosphorylated p.Y531, whereas the C-terminal truncations or mutations (p.Y531H) eliminate the phosphorylation site critical for the autoinhibitory SH2–C terminus interaction (Fig. 2B) (24).

FIGURE 2.

Single-nucleotide variants in TCR signaling pathway members disrupt key regulatory domains. The mutation locations within protein domains are shown in the lollipop diagrams (created with trackViewer ([128]). The pie graph above a mutation position contains the percentage of the mutations within a gene that lie at the location for each TCL (26, 42, 47, 69, 75,). They are ordered, from bottom to top, as AITL (red), ATL (yellow), CTCL (blue), and PTCL-NOS (purple). The autoinhibition mechanisms of TCR pathway members are shown in the structural diagrams. Point mutations affecting key domains are marked with a lightning bolt. Truncating mutations are marked with a stop figure. The left figures labeled “inhibited” show the interactions at the basal state. The right figure labeled “activated” shows the active conformation and the effects of mutations. (A) Point mutations of FYN frequently occur in the SH3, SH2, and kinase domains. The most commonly mutated sites are p.R96 and p.R176. (B) FYN is autoinhibited by the SH2 domain interacting with the C terminus Y527 and SH3 domain interacting with the SH2-kinase linker domain. The Trp264 residue interacts with the αC helix of the kinase domain. During activation, the kinase domain is free to bind substrate. C terminus mutations/truncations or mutations in the SH2 or SH3 domains disrupt the inhibitory interaction. (C) Point mutations in PLCG1 frequently occur in the PH, catalytic, and C2 domains. The most commonly mutated sites are p.R48, p.S345, p.E1163, and p.D1165. (D) The PLCG1 p.Y783 site is phosphorylated during activation and frees the catalytic core by binding to the C-SH2 domain. Mutations in the catalytic core or in the PH domain disrupt the autoinhibitory interface, allowing the catalytic core to access substrate. (E) Point mutations in VAV1 frequently occur in the acidic linker region, PH, ZF, and C-SH3 domains. The most commonly mutated site is p.E556. (F) VAV1 autoinhibition is mediated by Ac, PH, and CH domains that block the DH domain active site. Mutations in the Ac or DH domain disrupt the autoinhibition. Truncating or point mutations in the C-terminal SH3 domain are also frequently seen in TCLs. (G) Point mutations in RHOA frequently occur in the GTP binding domains. The most commonly mutated site is p.G17. (H) Point mutations in PRKCB frequently occur in the protein kinase domains. The most commonly mutated site is p.D427. (I) PRKCB features a C1b domain that sequesters the essential p.F629 residue from the active site during autoinhibition. Mutations in the protein kinase N-lobe allow activation independent of upstream kinases. (J) Point mutations in CARD11 frequently occur in the coiled-coil and inhibitory domains. The most commonly mutated sites are p.D401 and p.E626. (K) CARD11 forms an autoinhibited structure featuring multiple interactions with the inhibitory domain (ID). Phosphorylation of the domain activates CARD11. Mutations affecting the ID domain or linker region enable autonomous activation of CARD11.

FIGURE 2.

Single-nucleotide variants in TCR signaling pathway members disrupt key regulatory domains. The mutation locations within protein domains are shown in the lollipop diagrams (created with trackViewer ([128]). The pie graph above a mutation position contains the percentage of the mutations within a gene that lie at the location for each TCL (26, 42, 47, 69, 75,). They are ordered, from bottom to top, as AITL (red), ATL (yellow), CTCL (blue), and PTCL-NOS (purple). The autoinhibition mechanisms of TCR pathway members are shown in the structural diagrams. Point mutations affecting key domains are marked with a lightning bolt. Truncating mutations are marked with a stop figure. The left figures labeled “inhibited” show the interactions at the basal state. The right figure labeled “activated” shows the active conformation and the effects of mutations. (A) Point mutations of FYN frequently occur in the SH3, SH2, and kinase domains. The most commonly mutated sites are p.R96 and p.R176. (B) FYN is autoinhibited by the SH2 domain interacting with the C terminus Y527 and SH3 domain interacting with the SH2-kinase linker domain. The Trp264 residue interacts with the αC helix of the kinase domain. During activation, the kinase domain is free to bind substrate. C terminus mutations/truncations or mutations in the SH2 or SH3 domains disrupt the inhibitory interaction. (C) Point mutations in PLCG1 frequently occur in the PH, catalytic, and C2 domains. The most commonly mutated sites are p.R48, p.S345, p.E1163, and p.D1165. (D) The PLCG1 p.Y783 site is phosphorylated during activation and frees the catalytic core by binding to the C-SH2 domain. Mutations in the catalytic core or in the PH domain disrupt the autoinhibitory interface, allowing the catalytic core to access substrate. (E) Point mutations in VAV1 frequently occur in the acidic linker region, PH, ZF, and C-SH3 domains. The most commonly mutated site is p.E556. (F) VAV1 autoinhibition is mediated by Ac, PH, and CH domains that block the DH domain active site. Mutations in the Ac or DH domain disrupt the autoinhibition. Truncating or point mutations in the C-terminal SH3 domain are also frequently seen in TCLs. (G) Point mutations in RHOA frequently occur in the GTP binding domains. The most commonly mutated site is p.G17. (H) Point mutations in PRKCB frequently occur in the protein kinase domains. The most commonly mutated site is p.D427. (I) PRKCB features a C1b domain that sequesters the essential p.F629 residue from the active site during autoinhibition. Mutations in the protein kinase N-lobe allow activation independent of upstream kinases. (J) Point mutations in CARD11 frequently occur in the coiled-coil and inhibitory domains. The most commonly mutated sites are p.D401 and p.E626. (K) CARD11 forms an autoinhibited structure featuring multiple interactions with the inhibitory domain (ID). Phosphorylation of the domain activates CARD11. Mutations affecting the ID domain or linker region enable autonomous activation of CARD11.

Close modal

ITK belongs to the Tec family of protein kinases. It is activated and recruited to the membrane by two mechanisms (30, 31). ZAP70 phosphorylates the adaptors LAT and SLP-76, which contain binding sites for the SH2 and SH3 domains of ITK (32). Simultaneously, costimulation through CD28 activates PI3K and produces PIP3, the attachment site of the ITK pleckstrin homology (PH) domain. Activated ITK subsequently phosphorylates PLCγ1 (33, 34). In PTCL-NOS, there are recurrent ITKSYK fusions linking the PH and TH domains of ITK with the kinase domain of the spleen TK (SYK) (35). The PH domain of ITK enables the fusion transcript to constitutively localize to lipid rafts near the sites of TCR signaling. This appears to be sufficient to enable phosphorylation of proximal signaling proteins in a TCR-independent manner (36).

PLCG1

Following activation by proximal PTKs, PLCγ1 catalyzes the conversion of phosphatidylinositol-4,5-bisphosphate (PIP2) to inositol-1,4,5-triphosphate (IP3) and diacylglycerol (DAG). PLCγ1 consists of an N-terminal PH region, an EF region, a catalytic X-Y domain with a γ1-specific array of SH2 and SH3 modules, and a C2 domain (37). Point mutations in PLCG1 are frequent in T cell neoplasms: 11% of AITL, 36% of ATL, 10% of CTCL, and 9% of PTCL-NOS (Fig. 1) (28, 29, 38). They occur in the loop regions of the TIM-barrel surfaces that form the active site opening and in the C2, cSH2, and PH domains (Fig. 2C) (39). These mutations increase production of IP3 and uniformly activate NFAT and AP-1, but variably activate NF-κB (38, 40, 41).

Normally, PLCγ1 is maintained in an inactive state by autoinhibitory interactions between the catalytic X-Y domain and inhibitory C2, PH, and two SH2 domains, preventing the DH domain from binding lipid substrates (Fig. 2D) (39, 42). Phosphorylation of p.Y783 disrupts the autoinhibitory interface and enables hydrolysis at the active site. p.S345F in the TIM barrel and p.S520F in the PH domain disrupt the autoinhibitory domain interactions and thus no longer require phosphorylation of p.Y783 for PLCγ1 kinase activity (43).

PLCG1 mutations have also been proposed to increase phosphodiesterase activity by increasing plasma membrane affinity and interaction with PIP2 (41). p.R48W, p.S345F, p.E1163K, p.D1165H, and p.VYEEDM1161V act through this mechanism (38). Furthermore, the PLCG1 indel, p.VYEEDM1161V, reported in SS (44), occurs in the hotspot C2 domain of PLCG1, a calcium-dependent, membrane-targeting module. p.VYEEDM1161V resulted in decreased expression of PLCγ1, suggesting that the indel affects protein stability and may lead to faster degradation of PLCγ1. Nevertheless, it increased phosphorylation of Y783 and is one of the most potent activators of NFAT compared with other PLCG1 mutations (38).

VAV1

VAV1, a guanine nucleotide exchange factor (GEF), activates Rho family GTPases RAC1, RHOA, and CDC42 (45). It also has catalysis-independent mechanisms as an adaptor protein to activate the PLCγ1-dependent pathway, stimulating NFAT. VAV1 contains eight domains: N-terminal calponin homology (CH) and acidic (Ac) domains, Dbl homology (DH) and PH domains that make up a catalytic core, zinc finger (ZF), and C-terminal SH2 and SH3 domains. The active site (DH) is inhibited through multiple interactions with the Ac, PH, and CH domains that block access to substrate and inhibit GEF activity (Fig. 2E) (46). The SH3 domain interacts with the PH and catalytic domains to stabilize these interactions and occlude the catalytic domain from substrates (47). The highly conserved p.Y174 position in the Ac region acts as a molecular lock by facilitating the binding of the inhibitory helix to the DH active site (46). Phosphorylation of p.Y174 by LCK and ZAP70 displaces the inhibitory helix from the DH domain and frees the active site to bind substrate (Fig. 2F) (46).

VAV1 alterations in TCLs encompass point mutations, focal intragenic deletions that affect splicing, and gene fusions that delete the autoinhibitory C-terminal SH3 domain. Point mutations in VAV1 are frequently found in 5% of AITL, 18% of ATL, 1% of CTCL, and 6% of PTCL-NOS (Fig. 1) (28, 29). Hotspots occur in the Ac, PH, ZF, and C-terminal SH3 domains that regulate VAV1. These mutations, such as p.Y174C in ATL, abolish the autoinhibitory interactions between the DH and Ac domains; the mechanism of the ZF domain mutations is uncertain (28). VAV1 mutations activate PLCγ1 and subsequently NFAT. It can also activate RAC1, with downstream effects on cytoskeleton remodeling and increased JNK activity, which in turn activates the AP-1 signaling pathway (48).

Structural variants of VAV1 occur in PTCL-NOS, AITL, and ALCL. The 778–786 deletion in PTCL is caused by a splice site mutation within the linker region between the SH2 and C-terminal SH3 domains (49). VAV1 rearrangements, such as VAV1–MYOF1 and others, eliminate the C-terminal SH3 domain of VAV1 and enable it to energetically favor the open, disinhibited configuration (4951).

Analogous to the SH3 domain point mutations, the VAV1–MYO1F fusion increases basal activation of VAV1-dependent signaling cascades, including MAPK (ERK1/2), JNK, and NFAT, which are further augmented by TCR stimulation. These cells have increased expression of MAF following CD3 and CD28 stimulation, preferential IL-4 secretion with stimulation by PMA/ionomycin, and enrichment of TH2 transcription signatures (52). These data suggest that a modification of TCR-associated signaling enzymes is sufficient to induce TH2 differentiation. Mechanistically, this may promote lymphomagenesis in part by creating a protumor TH2 microenvironment and polarizing M2 tissue-resident macrophages (52). Notably, GATA3+ PTCL-NOS are the most aggressive of PTCL subtypes, suggesting the clinical importance of these genotype–phenotype interactions.

Structural rearrangements in VAV1-associated enzymes are common in ALCLs. The nucleophosmin (NPM)–anaplastic lymphoma kinase (ALK) fusion combines the oligomerization domain of NPM with the C-terminal TK of ALK. It generates a constitutively active TK that defines a subset of ALK+ ALCLs. The fusion protein is essential for ALCL growth and survival by activating the STAT3, MEK/ERK, and PI3K/AKT pathways (5357). The fusion complexes with and phosphorylates VAV1, leading to upregulation of downstream small G proteins such as CDC42 and RAC1 (58). RAC1 and CDC42 regulate actin polymerization with ARP2/3, contributing to the shape and migration phenotype in ALCL similar to that of activated T cells (53).

RHOA

RHOA is a small GTPase activated upon TCR stimulation by specific GEFs, and it regulates the actin cytoskeleton, cell development, and proliferation. AITL (68%), ATL (8%), CTCL (5%), and PTCL-NOS (22%) have hotspot RHOA mutations (Fig. 1). Notably, their oncogenic role varies depending on the cell of origin (59, 60).

The GTP binding domains of RHOA are recurrently mutated in TCL (Fig. 2G). The p.G17V and p.A161D in AITL and p.N117I/K in CTCL have a dominant-negative effect by sequestering upstream RhoGEFs and decreasing levels of RHO-GTP. In contrast, the p.C16R and p.A161P in ATL are gain of function and have an increased GDP/GTP cycling rate and increased transcriptional activation (24, 5961). How RHOA mutations with distinct biochemical effects all support traditional cancer phenotypes, such as cell proliferation, during lymphomagenesis remains unclear.

Nonetheless, specific RHOA mutations have an impact on cell phenotypes. ATL cells carrying a wild-type or activating RHOA mutation (p.C16R/G, or p.A161P) have a Treg or effector T cell phenotype, whereas those carrying an inactivating RHOA mutation (p.G17V) have a memory T cell phenotype (59). RHOA p.G17V alteration accounts for 95% of RHOA mutations in AITL and 88% of RHOA mutations in PTCL-NOS (including Tfh-PTCL) (24, 29, 62, 63). Expression of the mutant RHOA isoform in premalignant cells is sufficient to induce expression of canonical Tfh markers programmed cell death protein 1 (PD1), ICOS, CXCL13, BCL6, and CD10 (64). The Tfh transcription factor BCL-6 and T–B cell interaction through SAP are required for AITL proliferation and lymphomagenesis (65). A mouse model of AITL generated with a p.G17V mutation led to proliferation of Tfh-like cells in lymph nodes with increased germinal center activity and plasma cell infiltration (60, 66).

Protein kinase C

Protein kinase C (PKC)-θ (PRKCQ) and PKC-β (PRKCB) are phosphorylated by PLCγ1 and, in turn, phosphorylate CARD11, a component of the CBM complex (67). The N-terminal pseudosubstrate region of PKC inhibits the C-terminal kinase domain via the Asn-Phe-Asp (NFD) motif. Receptor stimulation recruits PKC to the cell membrane via two interactions: the C2 domain binding to Ca2+ and phospholipids, and DAG binding to the C1 domains (67). Normally, the C1b domain sequesters p.F629 of the NFD domain and prevents its projection into the ATP binding site. DAG engagement of the C1 domain frees p.F629 to participate in hydrolysis (Fig. 2I) (68).

PKC-θ and PKC-β are mutated in CTCL and ATL (Fig. 1) (28, 69). PRKCQ is amplified in 30% of CTCL, leading to increased STAT3 and NFAT activation (69, 70). PRKCB is mutated in 33% of ATL and 1% of CTCL, with >90% of mutations clustering in the enzymatic domain (Fig. 2H) (71). D427 and D630 mutations obviate the need for activation by upstream kinases (71). The p.D427 residue is near p.Y422 and p.Y430 that stabilize the C1b–NFD interaction, and the p.D630 residue is within the NFD motif; destabilization of either of these regions causes activation (71). PRKCB p.D427N thus increases IκB kinase (IKK) phosphorylation and subsequent downstream NF-κB transcription (28).

The CBM complex

CARD11/CARMA1 is a scaffolding protein containing an N-terminal CARD domain, coiled-coil domain, linker domain, PDZ domain, and a membrane-associated guanylate kinase (MAGUK) (72). CARD11 is autoinhibited by an interface involving the linker and coiled-coil domains (73). Activated PKC phosphorylates the inhibitory domains located near the linker region and disrupt the inhibitory interface that sequesters the CARD domain (Fig. 2K) (74, 75). The open CARD11 scaffold can recruit its binding partners BCL10 and MALT1 to form a stable oligomeric complex with additional enzymes and scaffolding proteins. For example, it attracts and polyubiquitinates TRAF6 at the SH3/PDZ domain (75, 76).

CARD11 point mutations in TCLs occur in the linker, coiled-coil, and inhibitory domains (Fig. 2J). They are present in 24% of ATL and 2–5% of AITL, CTCL, and PTCL-NOS (Fig. 1) (28, 29, 40, 69, 77). Copy number gains often accompany CARD11 mutations; 12% of ATL have gene amplifications and recurrent small intragenic deletions in the inhibitory domains (28). Mutations at the coiled-coil and linker regions typically disrupt the autoinhibitory interaction increase response and increase NF-κB activity following TCR signaling (28, 40, 77). For example, a mouse model of the ATL p.E626K mutation was sufficient to activate NF-κB biochemically, leading to effector/memory cell and Treg activation and local tissue destruction (78).

RLTPR

RLTPR is a scaffolding protein that bridges CD28 to the CARD11 adaptor (Fig. 1) (62). It has no enzymatic domains. Instead, it harbors an essential PH domain, leucine-rich repeat (LRR), and proline-rich region; the LRR is necessary for colocalization with CARD11 (62). The proline-rich region mediates signals from CD28 through attachments involving growth factor receptor-bound protein 2 (GRB2)/GRB2-related adaptor protein 2 (GRAP2) (79). Functional RLTPR is essential for differentiation into TH1, TH17, and Treg (79, 80). RLTPR mutations (found in 3% of CTCL and 8% of ATL) cluster at p.Q575, which is located on the surface-exposed, convex side of the LRR region (19, 48). p.Q575E dramatically increases association with CARD11 (61). However, in the absence of TCR activation, it does not appear to functionally alter the cell. For example, p.Q575E augments gene transcription (e.g., NF-κB activity) and IL-2 production only in cells stimulated with chemical TCR mimics but not in unstimulated controls (48, 63). These data suggest that CTCLs must undergo repeated chronic or tonic TCR stimulation to provide selection pressure for their recurrence rate (48, 63).

CSNK1A1

CSNK1A1 encodes casein kinase 1a, a serine/threonine kinase that consists of an N-terminal catalytic domain coupled to a C-terminal V region (81). It has dual function in T cells: it first associates with the CBM complex following TCR engagement to recruit IKK to phosphorylate IκB and activate NF-κB; then, it phosphorylates and inactivates CARD11 to attenuate signaling (82). CSNK1A1 has recurrent mutations in CTCL and ATL at p.S27 (p.S27F/C) (61). These alterations occur at the tip of the phosphate binding, glycine-rich P-loop in the kinase domain of CK1a (61). The P-loop is a structure shared by protein kinases that normally blocks binding of the peptide substrate to the active site residues and is relieved by phosphorylation (83). In lung cancer, epidermal growth factor receptor (EGFR) mutations in the P-loop domain, which share a similar function, result in enhanced kinase activity (84). These mutations cause increased expression of IL-2 in response to TCR stimulation with CD86 costimulation in Jurkat cells, suggesting they potentiate its pro–NF-κB signaling (61).

CD28

CD28 belongs to a family of surface receptors, including CTLA4 and ICOS, that are covalent homodimers with Ig domains attached to transmembrane and cytoplasmic tyrosine signaling motifs (85). It is a costimulatory receptor that binds to the ligands CD80 (B7.1) or CD86 (B7.2) for full proliferation and cytokine production following TCR engagement (86). CD28 and ICOS contain activating tyrosine domains, whereas CTLA4 contains inhibitory tyrosine domains; the balance between these signals governs the T cell phenotype (87). CTLA4 interacts with two CD86 molecules and has 50- to 100-fold higher binding affinity for CD86 than CD28, which only binds one CD86 molecule (88).

CD28 point mutations occur in 13% of AITL and 2–4% of ATL and CTCL (Fig. 1). A subset of the CD28 mutations combine properties of the extracellular domain of CTLA4 with the intracellular activating domains of CD28. First, there are CTLA4–CD28 fusions that link the CTLA4 extracellular domain to the CD28 intracellular domain (28, 89). Second, there are point mutations that make CD28 more avid for their ligands and thus their extracellular domain more CTLA4-like. For example, there are three highly conserved residues between CD28 and CTLA4 in analogous positions of the C β strand (85). p.F51V in CTCL and ATL modify the Glu-Phe-Arg residues on the C β strand of the IgV domain in CD28 to mimic the Glu-Val-Arg residues on the C β strand of the IgV domain in CTLA4 (28, 69, 85). This substitution increases avidity of the CD28 mutant for CD86 but not for CD80 (28, 69).

Intracellular mutations, for example, p.T195P/I in AITL, ATL, and PTCL-NOS, are located between the SH2 binding motif and the SH3 binding motif near the C terminus. They increase the affinity of CD28 for the adaptor proteins GRB2 and GADS/GRAP2 compared with wild-type CD28 (28, 90). This leads to increased ligand-dependent NF-κB activity and cytokine expression in Jurkat cells (90).

PD1/PD-L1

PD1 is an inhibitory receptor on activated T cells that engages the ligands PD-L1 and/or PD-L2. It inhibits TCR and CD28 activation biochemically, and it phenotypically promotes T cell dysfunction associated with chronic TCR activation, colloquially called T cell exhaustion (91). Unlike costimulatory proteins, PD1 has intramembrane domain with ITIM and immunoreceptor tyrosine-based switch motif (ITSM) domains that recruit tyrosine phosphatases, which dephosphorylate enzymes critical for TCR signaling, that is, ZAP70, LCK, and PI3K (92).

Deletions and pharmacologic inhibition have demonstrated that PD1 acts as a haploinsufficient tumor suppressor in TCLs (93). PDCD1 damaging mutations are present in 23% of mature T cell neoplasms (Fig. 1) (93). PD1 inactivating mutations contribute to the development of aggressive and serially transplantable lymphomas in mouse models (93). In patients, PD1 loss is associated with increased clinical stage of disease and shorter survival in CTCL (94). Mechanistically, CTCLs with PDCD1 gene locus deletions have decreased exhaustion and increased proliferation compared with PD1 wild-type samples (94). Highlighting its role as a tumor suppressor, PD1 blockade with a blocking Ab (nivolumab) in acute, smoldering, and chronic ATL led to rapid disease progression (95).

TNF-α–induced protein 3

TNF-α–induced protein 3 (TNFAIP3/A20) is a negative regulator of the NF-κB signaling pathway that contains an N-terminal deubiquitinating enzyme targeting K63 polyubiquitin chains and a C terminus ZF domain that ubiquitinylates at p.K48 (96). p.K63 polyubiquitinated TRAF6 and RIP serve as scaffolds for ubiquitin-binding domain proteins and recruit TGF-β–activated kinase 1 (TAK1) and IKK to activate NF-κB; TNFAIP3 removes p.K63 polyubiquitination while ubiquitinating at p.K48, which decreases NF-κB activity (97). TNFAIP3 is a transcriptional target of NF-κB and is thought to act in a negative feedback mechanism to terminate NF-κB signaling (98). TNFAIP3 is deleted in 25% of CTCL (Fig. 1); deletion of one copy abrogates the need for CD28 costimulation and causes hyperproliferation following TCR stimulation (69, 99, 100).

NF-κB

Gain-of-function mutations in the TCR pathway (CARD11 [77], CD28 [90], PLCG1 [40], and RLTPR [61]) activate NF-κB. The NF-κB subunit family includes p50 and its precursor p105 (NFKB1), p52 and its precursor p100 (NFKB2), RelA (p65), RelB, and c-Rel (101). Each subunit has a Rel homology region, containing an N terminus domain, a dimerization domain, and a C terminus nuclear localization signal (102). The transcription activation domain is present in RelA, RelB, and c-Rel; NF-κB dimers containing one of these three subunits are required for transcription activation (103, 104). IκB family members contain a series of six ankyrin repeats that mask the nuclear localization signal of the NF-κB heterodimers, sequestering them in the cytoplasm. IκB phosphorylation by the IKK complex during T cell activation targets IκB for degradation, allowing NF-κB heterodimers to interact with their target DNA sequences (102, 105, 106). Notably, p105 and p100 also contain C-terminal ankyrin repeats that act as IκB domains, which sequester the full-length protein in the cytoplasm. With IKK activation, this part of the protein is ubiquitinated and degraded by the proteasome, enabling the N terminus p50 or p52 to translocate to the nucleus (107, 108).

NF-κB transcription factors can themselves be mutated. Structural alterations of NF-κB subunits increase proliferation and survival in CTCL and ATL in a cell-intrinsic manner (71, 94). C-terminal truncations or splice site mutations of NFKB2 are found in 12.5% of CTCL (especially in late-stage leukemic disease) (61, 69). They simulate constitutive degradation of the C-terminal IκB-like domains and free NFKB2 from cytoplasmic sequestration, causing constitutive nuclear localization and activation of the noncanonical NF-κB pathway (69, 109).

Zeb1

ZF E-box binding homeobox 1 (ZEB1) is a transcriptional repressor. It is an oncogene involved with epithelial–mesenchymal transition, metastasis, and drug resistance in many epithelial cancers (110, 111). However, it appears to be a tumor suppressor in TCLs (112114). For example, ZEB1 is deleted or subjected to inactivating point mutations in 65% of CTCL (69). ZEB1 has many putative immunologically relevant mechanisms inferred from older studies performed on T cell lines. However, in mouse and human primary T cells, ZEB1 appears to be mostly necessary for JAK2-dependent TH1/TH17 cell fate determination and suppression of TH2 cell differentiation (115118). The mechanisms by which ZEB1 supports lymphomagenesis is not clear, but ZEB1-inactivating mutations may affect the immunophenotype of the lymphomas, that is, the cytokines produced by the lymphoma cells (119).

IFN regulatory factor 4

The c-Rel/NF-κB complex binds to the IFN regulatory factor 4 (IRF4) promoter upon TCR stimulation (120). IRF4 is a transcription factor essential for metabolic reprogramming in T cell proliferation. It is also critical for the TH1, TH2, TH9, TH17, and Tfh cell lineages, making its role in lymphomagenesis unclear (121123). It consists of a DNA binding domain, a linker domain, and an IFN association domain (124). Point mutations and translocations in IRF4 in TCLs overexpress or increase activity of IRF4. In ATL, a mutation in IRF4 occurs at the highly conserved p.K59. p.K59R preserves the DNA binding function but prevents ubiquitination, leading to increased protein half-life and increased activity (124). Expression of p.K59R in murine bone marrow cells caused T cell proliferation (124).

BACH2

Broad complex/tramtrack/bric-a-brac and Cap’n’collar homology 2 (BACH2) is a transcription factor that limits the expression of TCR-driven genes by reducing the accessibility of AP-1 (125). BACH2 was first described as a novel tumor suppressor in CTCL (126). It is mutated in 14% of CTCL samples via intragenic translocations that uncouple its coding sequences from its promoter or via transposon insertions in the BACH2 gene locus (94). This appears clinically relevant as the gene is inactivated in 25% of lymphomas that develop from chimeric Ag receptor (CAR) T cells (127). These invariably decreased BACH2 expression and were linked to higher rates of development into CAR TCLs (126). It remains unclear whether the prevalence of these mutations in CAR T cell–derived lymphomas was due to selection for BACH2 insertion or as a preference for insertion in the region (126).

Integrated genomic analyses of TCLs have revealed recurrent mutations in the TCR signaling pathways. Often, mutations share similar mechanisms, such as loss of inhibitory domains, disruption of intramolecular interactions, and increased catalytic activity. The phenotypic manifestations of T cell neoplasms are a direct consequence of the cell of origin, specific genetic derangements, and nearby cell signals. Certain mutations appear to be disease defining, for example, RHOA p.G17V for AITL. These appear to be sufficient to affect the immunophenotype of the malignant T cell leading to clinically relevant inflammation. In summary, human TCLs offer a human genetic model system to study the regulation of TCR-associated molecules and their functional importance. Although much has been learned biochemically in experimental systems, how these mutations affect primary cells in their native microenvironments remains unclear. Spatial transcriptomics and single-cell studies of these lymphomas may reveal fundamental insights on immune cell interactions. Cell lines and mouse models that capture specific immunophenotypes may be generated to explore effector interactions that cause pathology. Lastly, further studies are required combining understanding of tumor biology with biochemistry to elucidate mechanisms that can be targeted to benefit patients with these diseases.

The authors have no financial conflicts of interest.

J.C. was supported by a Scholar Award (1377-21) from the Leukemia and Lymphoma Society, a Research Scholar Grant (134534-RSG-20-050-01-LIB) from the American Cancer Society, and Grant 5R01-CA260064 from the National Institutes of Health.

Ac

acidic

AITL

angioimmunoblastic TCL

ALCL

anaplastic large cell lymphoma

ALK

anaplastic lymphoma kinase

ATL

adult T cell leukemia/lymphoma

BACH2

broad complex/tramtrack/bric-a-brac and Cap’n’collar homology 2

CAR

chimeric Ag receptor

CARD

caspase recruitment domain

CARD11

CARD family member 11

CBM

CARD11/BCL10/MALT1

CH

calponin homology

DAG

diacylglycerol

DH

Dbl homology

GEF

guanine nucleotide exchange factor

GRB2

growth factor receptor-bound protein 2

IKK

IκB kinase

ITK

IL2-inducible T-cell kinase

LRR

leucine-rich repeat

NFD

Asn-Phe-Asp

PH

pleckstrin homology

PD1

programmed cell death protein 1

PKC

protein kinase C

PLC

phospholipase C

PTCL

peripheral TCL

PTCL-NOS

PTCL not otherwise specified

PTK

protein tyrosine kinase

TCL

T cell lymphoma

SH

Src homology

Tfh

T follicular helper

TK

tyrosine kinase

TNFAIP3

TNF-α–induced protein 3

Treg

regulatory T cell

ZEB1

ZF E-box binding homeobox 1

ZF

zing finger

1
Van Arnam
,
J. S.
,
M. S.
Lim
,
K. S. J.
Elenitoba-Johnson
.
2018
.
Novel insights into the pathogenesis of T-cell lymphomas
.
Blood
131
:
2320
2330
.
2
Swerdlow
,
S. H.
,
E.
Campo
,
S. A.
Pileri
,
N. L.
Harris
,
H.
Stein
,
R.
Siebert
,
R.
Advani
,
M.
Ghielmini
,
G. A.
Salles
,
A. D.
Zelenetz
,
E. S.
Jaffe
.
2016
.
The 2016 revision of the World Health Organization classification of lymphoid neoplasms
.
Blood
127
:
2375
2390
.
3
de Leval
,
L.
,
P.
Gaulard
.
2014
.
Cellular origin of T-cell lymphomas
.
Blood
123
:
2909
2910
.
4
Iqbal
,
J.
,
G.
Wright
,
C.
Wang
,
A.
Rosenwald
,
R. D.
Gascoyne
,
D. D.
Weisenburger
,
T. C.
Greiner
,
L.
Smith
,
S.
Guo
,
R. A.
Wilcox
, et al;
Lymphoma Leukemia Molecular Profiling Project and the International Peripheral T-cell Lymphoma Project
.
2014
.
Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma
.
Blood
123
:
2915
2923
.
5
de Leval
,
L.
,
D. S.
Rickman
,
C.
Thielen
,
A.
Reynies
,
Y. L.
Huang
,
G.
Delsol
,
L.
Lamant
,
K.
Leroy
,
J.
Brière
,
T.
Molina
, et al
2007
.
The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells
.
Blood
109
:
4952
4963
.
6
Schleussner
,
N.
,
O.
Merkel
,
M.
Costanza
,
H. C.
Liang
,
F.
Hummel
,
C.
Romagnani
,
P.
Durek
,
I.
Anagnostopoulos
,
M.
Hummel
,
K.
Jöhrens
, et al
2018
.
The AP-1-BATF and -BATF3 module is essential for growth, survival and TH17/ILC3 skewing of anaplastic large cell lymphoma
.
Leukemia
32
:
1994
2007
.
7
Roncador
,
G.
,
J. F.
Garcia
,
J. F.
Garcia
,
L.
Maestre
,
E.
Lucas
,
J.
Menarguez
,
K.
Ohshima
,
S.
Nakamura
,
A. H.
Banham
,
M. A.
Piris
.
2005
.
FOXP3, a selective marker for a subset of adult T-cell leukaemia/lymphoma
.
Leukemia
19
:
2247
2253
.
8
Amador
,
C.
,
T. C.
Greiner
,
T. B.
Heavican
,
L. M.
Smith
,
K. T.
Galvis
,
W.
Lone
,
A.
Bouska
,
F.
D’Amore
,
M. B.
Pedersen
,
S.
Pileri
, et al
2019
.
Reproducing the molecular subclassification of peripheral T-cell lymphoma-NOS by immunohistochemistry
.
Blood
134
:
2159
2170
.
9
Horna
,
P.
,
L. C.
Moscinski
,
L.
Sokol
,
H.
Shao
.
2019
.
Naïve/memory T-cell phenotypes in leukemic cutaneous T-cell lymphoma: Putative cell of origin overlaps disease classification
.
Cytometry B Clin. Cytom.
96
:
234
241
.
10
Swerdlow
,
S. H.
,
E. S.
Jaffe
,
P.
Brousset
,
J. K.
Chan
,
L.
de Leval
,
P.
Gaulard
,
N. L.
Harris
,
S.
Pileri
,
L. M.
Weiss
;
International Lymphoma Study Group
.
2014
.
Cytotoxic T-cell and NK-cell lymphomas: current questions and controversies
.
Am. J. Surg. Pathol.
38
:
e60
e71
.
11
Cortés
,
J. R.
,
T.
Palomero
.
2021
.
Biology and molecular pathogenesis of mature T-cell Lymphomas
.
Cold Spring Harb. Perspect. Med.
11
:
ea035402
.
12
de Bruin
,
P. C.
,
J. A.
Kummer
,
P.
van der Valk
,
P.
van Heerde
,
P. M.
Kluin
,
R.
Willemze
,
G. J.
Ossenkoppele
,
T.
Radaszkiewicz
,
C. J.
Meijer
.
1994
.
Granzyme B-expressing peripheral T-cell lymphomas: neoplastic equivalents of activated cytotoxic T cells with preference for mucosa-associated lymphoid tissue localization
.
Blood
84
:
3785
3791
.
13
Dong
,
D.
,
L.
Zheng
,
J.
Lin
,
B.
Zhang
,
Y.
Zhu
,
N.
Li
,
S.
Xie
,
Y.
Wang
,
N.
Gao
,
Z.
Huang
.
2019
.
Structural basis of assembly of the human T cell receptor-CD3 complex
. [Published erratum appears in 2021 Nature 590: E52.]
Nature
573
:
546
552
.
14
Wieczorek
,
M.
,
E. T.
Abualrous
,
J.
Sticht
,
M.
Álvaro-Benito
,
S.
Stolzenberg
,
F.
Noé
,
C.
Freund
.
2017
.
Major histocompatibility complex (MHC) class I and MHC class II proteins: conformational plasticity in antigen presentation
.
Front. Immunol.
8
:
292
.
15
Palacios
,
E. H.
,
A.
Weiss
.
2004
.
Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation
.
Oncogene
23
:
7990
8000
.
16
Yamaguchi
,
H.
,
W. A.
Hendrickson
.
1996
.
Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylation
.
Nature
384
:
484
489
.
17
Resh
,
M. D.
1999
.
Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins
.
Biochim. Biophys. Acta
1451
:
1
16
.
18
Casulo
,
C.
,
O.
O’Connor
,
A.
Shustov
,
M.
Fanale
,
J. W.
Friedberg
,
J. P.
Leonard
,
B. S.
Kahl
,
R. F.
Little
,
L.
Pinter-Brown
,
R.
Advani
,
S.
Horwitz
.
2016
.
T-cell lymphoma: recent advances in characterization and new opportunities for treatment
.
J. Natl. Cancer Inst.
109
:
djw248
.
19
Shah
,
K.
,
A.
Al-Haidari
,
J.
Sun
,
J. U.
Kazi
.
2021
.
T cell receptor (TCR) signaling in health and disease
.
Signal Transduct. Target. Ther.
6
:
412
.
20
Kent
,
A.
,
N. V.
Longino
,
A.
Christians
,
E.
Davila
.
2021
.
Naturally occurring genetic alterations in proximal TCR signaling and implications for cancer immunotherapy
.
Front. Immunol.
12
:
658611
.
21
Hwang
,
J. R.
,
Y.
Byeon
,
D.
Kim
,
S. G.
Park
.
2020
.
Recent insights of T cell receptor-mediated signaling pathways for T cell activation and development
.
Exp. Mol. Med.
52
:
750
761
.
22
Filby
,
A.
,
B.
Seddon
,
J.
Kleczkowska
,
R.
Salmond
,
P.
Tomlinson
,
M.
Smida
,
J. A.
Lindquist
,
B.
Schraven
,
R.
Zamoyska
.
2007
.
Fyn regulates the duration of TCR engagement needed for commitment to effector function
.
J. Immunol.
179
:
4635
4644
.
23
Salmond
,
R. J.
,
A.
Filby
,
I.
Qureshi
,
S.
Caserta
,
R.
Zamoyska
.
2009
.
T-cell receptor proximal signaling via the Src-family kinases, Lck and Fyn, influences T-cell activation, differentiation, and tolerance
.
Immunol. Rev.
228
:
9
22
.
24
Palomero
,
T.
,
L.
Couronné
,
H.
Khiabanian
,
M. Y.
Kim
,
A.
Ambesi-Impiombato
,
A.
Perez-Garcia
,
Z.
Carpenter
,
F.
Abate
,
M.
Allegretta
,
J. E.
Haydu
, et al
2014
.
Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas
.
Nat. Genet.
46
:
166
170
.
25
Meng
,
Y.
,
B.
Roux
.
2014
.
Locking the active conformation of c-Src kinase through the phosphorylation of the activation loop
.
J. Mol. Biol.
426
:
423
435
.
26
Au-Yeung
,
B. B.
,
S.
Deindl
,
L. Y.
Hsu
,
E. H.
Palacios
,
S. E.
Levin
,
J.
Kuriyan
,
A.
Weiss
.
2009
.
The structure, regulation, and function of ZAP-70
.
Immunol. Rev.
228
:
41
57
.
27
Fajer
,
M.
,
Y.
Meng
,
B.
Roux
.
2017
.
The activation of c-Src tyrosine kinase: conformational transition pathway and free energy landscape
.
J. Phys. Chem. B
121
:
3352
3363
.
28
Kataoka
,
K.
,
Y.
Nagata
,
A.
Kitanaka
,
Y.
Shiraishi
,
T.
Shimamura
,
J.
Yasunaga
,
Y.
Totoki
,
K.
Chiba
,
A.
Sato-Otsubo
,
G.
Nagae
, et al
2015
.
Integrated molecular analysis of adult T cell leukemia/lymphoma
.
Nat. Genet.
47
:
1304
1315
.
29
Watatani
,
Y.
,
Y.
Sato
,
H.
Miyoshi
,
K.
Sakamoto
,
K.
Nishida
,
Y.
Gion
,
Y.
Nagata
,
Y.
Shiraishi
,
K.
Chiba
,
H.
Tanaka
, et al
2019
.
Molecular heterogeneity in peripheral T-cell lymphoma, not otherwise specified revealed by comprehensive genetic profiling
.
Leukemia
33
:
2867
2883
.
30
Brown
,
K.
,
J. M.
Long
,
S. C.
Vial
,
N.
Dedi
,
N. J.
Dunster
,
S. B.
Renwick
,
A. J.
Tanner
,
J. D.
Frantz
,
M. A.
Fleming
,
G. M.
Cheetham
.
2004
.
Crystal structures of interleukin-2 tyrosine kinase and their implications for the design of selective inhibitors
.
J. Biol. Chem.
279
:
18727
18732
.
31
Gibson
,
S.
,
B.
Leung
,
J. A.
Squire
,
M.
Hill
,
N.
Arima
,
P.
Goss
,
D.
Hogg
,
G. B.
Mills
.
1993
.
Identification, cloning, and characterization of a novel human T-cell-specific tyrosine kinase located at the hematopoietin complex on chromosome 5q
.
Blood
82
:
1561
1572
.
32
Bogin
,
Y.
,
C.
Ainey
,
D.
Beach
,
D.
Yablonski
.
2007
.
SLP-76 mediates and maintains activation of the Tec family kinase ITK via the T cell antigen receptor-induced association between SLP-76 and ITK
.
Proc. Natl. Acad. Sci. USA
104
:
6638
6643
.
33
Hawkins
,
J.
,
A.
Marcy
.
2001
.
Characterization of Itk tyrosine kinase: contribution of noncatalytic domains to enzymatic activity
.
Protein Expr. Purif.
22
:
211
219
.
34
Devkota
,
S.
,
R. E.
Joseph
,
L.
Min
,
D.
Bruce Fulton
,
A. H.
Andreotti
.
2015
.
Scaffold protein SLP-76 primes PLCγ1 for activation by ITK-mediated phosphorylation
.
J. Mol. Biol.
427
:
2734
2747
.
35
Rigby
,
S.
,
Y.
Huang
,
B.
Streubel
,
A.
Chott
,
M. Q.
Du
,
S. D.
Turner
,
C. M.
Bacon
.
2009
.
The lymphoma-associated fusion tyrosine kinase ITK-SYK requires pleckstrin homology domain-mediated membrane localization for activation and cellular transformation
.
J. Biol. Chem.
284
:
26871
26881
.
36
Pechloff
,
K.
,
J.
Holch
,
U.
Ferch
,
M.
Schweneker
,
K.
Brunner
,
M.
Kremer
,
T.
Sparwasser
,
L.
Quintanilla-Martinez
,
U.
Zimber-Strobl
,
B.
Streubel
, et al
2010
.
The fusion kinase ITK-SYK mimics a T cell receptor signal and drives oncogenesis in conditional mouse models of peripheral T cell lymphoma
.
J. Exp. Med.
207
:
1031
1044
.
37
Bunney
,
T. D.
,
D.
Esposito
,
C.
Mas-Droux
,
E.
Lamber
,
R. W.
Baxendale
,
M.
Martins
,
A.
Cole
,
D.
Svergun
,
P. C.
Driscoll
,
M.
Katan
.
2012
.
Structural and functional integration of the PLCγ interaction domains critical for regulatory mechanisms and signaling deregulation
.
Structure
20
:
2062
2075
.
38
Patel
,
V. M.
,
C. E.
Flanagan
,
M.
Martins
,
C. L.
Jones
,
R. M.
Butler
,
W. J.
Woollard
,
F. S.
Bakr
,
A.
Yoxall
,
N.
Begum
,
M.
Katan
, et al
2020
.
Frequent and persistent PLCG1 mutations in Sézary cells directly enhance PLCγ1 activity and stimulate NFκB, AP-1, and NFAT signaling
.
J. Invest. Dermatol.
140
:
380
389.e4
.
39
Liu
,
Y.
,
T. D.
Bunney
,
S.
Khosa
,
K.
Macé
,
K.
Beckenbauer
,
T.
Askwith
,
S.
Maslen
,
C.
Stubbs
,
T. M.
de Oliveira
,
K.
Sader
, et al
2020
.
Structural insights and activating mutations in diverse pathologies define mechanisms of deregulation for phospholipase C gamma enzymes
.
EBioMedicine
51
:
102607
.
40
Vallois
,
D.
,
M. P.
Dobay
,
R. D.
Morin
,
F.
Lemonnier
,
E.
Missiaglia
,
M.
Juilland
,
J.
Iwaszkiewicz
,
V.
Fataccioli
,
B.
Bisig
,
A.
Roberti
, et al
2016
.
Activating mutations in genes related to TCR signaling in angioimmunoblastic and other follicular helper T-cell-derived lymphomas
.
Blood
128
:
1490
1502
.
41
Vaqué
,
J. P.
,
G.
Gómez-López
,
V.
Monsálvez
,
I.
Varela
,
N.
Martínez
,
C.
Pérez
,
O.
Domínguez
,
O.
Graña
,
J. L.
Rodríguez-Peralto
,
S. M.
Rodríguez-Pinilla
, et al
2014
.
PLCG1 mutations in cutaneous T-cell lymphomas
.
Blood
123
:
2034
2043
.
42
Hajicek
,
N.
,
N. C.
Keith
,
E.
Siraliev-Perez
,
B. R.
Temple
,
W.
Huang
,
Q.
Zhang
,
T. K.
Harden
,
J.
Sondek
.
2019
.
Structural basis for the activation of PLC-γ isozymes by phosphorylation and cancer-associated mutations
.
eLife
8
:
e51700
.
43
Koss
,
H.
,
T. D.
Bunney
,
S.
Behjati
,
M.
Katan
.
2014
.
Dysfunction of phospholipase Cγ in immune disorders and cancer
.
Trends Biochem. Sci.
39
:
603
611
.
44
Kiel
,
M. J.
,
A. A.
Sahasrabuddhe
,
D. C. M.
Rolland
,
T.
Velusamy
,
F.
Chung
,
M.
Schaller
,
N. G.
Bailey
,
B. L.
Betz
,
R. N.
Miranda
,
P.
Porcu
, et al
2015
.
Genomic analyses reveal recurrent mutations in epigenetic modifiers and the JAK-STAT pathway in Sézary syndrome
.
Nat. Commun.
6
:
8470
.
45
Bustelo
,
X. R.
2000
.
Regulatory and signaling properties of the Vav family
.
Mol. Cell. Biol.
20
:
1461
1477
.
46
Yu
,
B.
,
I. R.
Martins
,
P.
Li
,
G. K.
Amarasinghe
,
J.
Umetani
,
M. E.
Fernandez-Zapico
,
D. D.
Billadeau
,
M.
Machius
,
D. R.
Tomchick
,
M. K.
Rosen
.
2010
.
Structural and energetic mechanisms of cooperative autoinhibition and activation of Vav1
.
Cell
140
:
246
256
.
47
Barreira
,
M.
,
S.
Fabbiano
,
J. R.
Couceiro
,
E.
Torreira
,
J. L.
Martínez-Torrecuadrada
,
G.
Montoya
,
O.
Llorca
,
X. R.
Bustelo
.
2014
.
The C-terminal SH3 domain contributes to the intramolecular inhibition of Vav family proteins
.
Sci. Signal.
7
:
ra35
.
48
Robles-Valero
,
J.
,
L.
Fernández-Nevado
,
L. F.
Lorenzo-Martín
,
M.
Cuadrado
,
I.
Fernández-Pisonero
,
S.
Rodríguez-Fdez
,
E. N.
Astorga-Simón
,
A.
Abad
,
R.
Caloto
,
X. R.
Bustelo
.
2021
.
Cancer-associated mutations in VAV1 trigger variegated signaling outputs and T-cell lymphomagenesis
.
EMBO J.
40
:
e108125
.
49
Abate
,
F.
,
A. C.
da Silva-Almeida
,
S.
Zairis
,
J.
Robles-Valero
,
L.
Couronne
,
H.
Khiabanian
,
S. A.
Quinn
,
M. Y.
Kim
,
M. A.
Laginestra
,
C.
Kim
, et al
2017
.
Activating mutations and translocations in the guanine exchange factor VAV1 in peripheral T-cell lymphomas
.
Proc. Natl. Acad. Sci. USA
114
:
764
769
.
50
Boddicker
,
R. L.
,
G. L.
Razidlo
,
S.
Dasari
,
Y.
Zeng
,
G.
Hu
,
R. A.
Knudson
,
P. T.
Greipp
,
J. I.
Davila
,
S. H.
Johnson
,
J. C.
Porcher
, et al
2016
.
Integrated mate-pair and RNA sequencing identifies novel, targetable gene fusions in peripheral T-cell lymphoma
.
Blood
128
:
1234
1245
.
51
Fujisawa
,
M.
,
M.
Sakata-Yanagimoto
,
S.
Nishizawa
,
D.
Komori
,
P.
Gershon
,
M.
Kiryu
,
S.
Tanzima
,
K.
Fukumoto
,
T.
Enami
,
M.
Muratani
, et al
2018
.
Activation of RHOA-VAV1 signaling in angioimmunoblastic T-cell lymphoma
.
Leukemia
32
:
694
702
.
52
Cortes
,
J. R.
,
I.
Filip
,
R.
Albero
,
J. A.
Patiño-Galindo
,
S. A.
Quinn
,
W. W.
Lin
,
A. P.
Laurent
,
B. B.
Shih
,
J. A.
Brown
,
A. J.
Cooke
, et al
2022
.
Oncogenic Vav1-Myo1f induces therapeutically targetable macrophage-rich tumor microenvironment in peripheral T cell lymphoma
.
Cell Rep.
39
:
110695
.
53
Ambrogio
,
C.
,
C.
Martinengo
,
C.
Voena
,
F.
Tondat
,
L.
Riera
,
P. F.
di Celle
,
G.
Inghirami
,
R.
Chiarle
.
2009
.
NPM-ALK oncogenic tyrosine kinase controls T-cell identity by transcriptional regulation and epigenetic silencing in lymphoma cells
.
Cancer Res.
69
:
8611
8619
.
54
Bai
,
R. Y.
,
T.
Ouyang
,
C.
Miething
,
S. W.
Morris
,
C.
Peschel
,
J.
Duyster
.
2000
.
Nucleophosmin-anaplastic lymphoma kinase associated with anaplastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway
.
Blood
96
:
4319
4327
.
55
Marzec
,
M.
,
Q.
Zhang
,
A.
Goradia
,
P. N.
Raghunath
,
X.
Liu
,
M.
Paessler
,
H. Y.
Wang
,
M.
Wysocka
,
M.
Cheng
,
B. A.
Ruggeri
,
M. A.
Wasik
.
2008
.
Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1)
.
Proc. Natl. Acad. Sci. USA
105
:
20852
20857
.
56
Pearson
,
J. D.
,
J. K.
Lee
,
J. T.
Bacani
,
R.
Lai
,
R. J.
Ingham
.
2012
.
NPM-ALK: the prototypic member of a family of oncogenic fusion tyrosine kinases
.
J. Signal Transduct.
2012
:
123253
.
57
Staber
,
P. B.
,
P.
Vesely
,
N.
Haq
,
R. G.
Ott
,
K.
Funato
,
I.
Bambach
,
C.
Fuchs
,
S.
Schauer
,
W.
Linkesch
,
A.
Hrzenjak
, et al
2007
.
The oncoprotein NPM-ALK of anaplastic large-cell lymphoma induces JUNB transcription via ERK1/2 and JunB translation via mTOR signaling
.
Blood
110
:
3374
3383
.
58
Colomba
,
A.
,
D.
Courilleau
,
D.
Ramel
,
D. D.
Billadeau
,
E.
Espinos
,
G.
Delsol
,
B.
Payrastre
,
F.
Gaits-Iacovoni
.
2008
.
Activation of Rac1 and the exchange factor Vav3 are involved in NPM-ALK signaling in anaplastic large cell lymphomas
.
Oncogene
27
:
2728
2736
.
59
Nagata
,
Y.
,
K.
Kontani
,
T.
Enami
,
K.
Kataoka
,
R.
Ishii
,
Y.
Totoki
,
T. R.
Kataoka
,
M.
Hirata
,
K.
Aoki
,
K.
Nakano
, et al
2016
.
Variegated RHOA mutations in adult T-cell leukemia/lymphoma
.
Blood
127
:
596
604
.
60
Lee
,
G. J.
,
Y.
Jun
,
H. Y.
Yoo
,
Y. K.
Jeon
,
D.
Lee
,
S.
Lee
,
J.
Kim
.
2020
.
Angioimmunoblastic T-cell lymphoma-like lymphadenopathy in mice transgenic for human RHOA with p.Gly17Val mutation
.
OncoImmunology
9
:
1746553
.
61
Park
,
J.
,
J.
Yang
,
A. T.
Wenzel
,
A.
Ramachandran
,
W. J.
Lee
,
J. C.
Daniels
,
J.
Kim
,
E.
Martinez-Escala
,
N.
Amankulor
,
B.
Pro
, et al
2017
.
Genomic analysis of 220 CTCLs identifies a novel recurrent gain-of-function alteration in RLTPR (p.Q575E)
.
Blood
130
:
1430
1440
.
62
Sakata-Yanagimoto
,
M.
,
T.
Enami
,
K.
Yoshida
,
Y.
Shiraishi
,
R.
Ishii
,
Y.
Miyake
,
H.
Muto
,
N.
Tsuyama
,
A.
Sato-Otsubo
,
Y.
Okuno
, et al
2014
.
Somatic RHOA mutation in angioimmunoblastic T cell lymphoma
.
Nat. Genet.
46
:
171
175
.
63
Yoo
,
H. Y.
,
M. K.
Sung
,
S. H.
Lee
,
S.
Kim
,
H.
Lee
,
S.
Park
,
S. C.
Kim
,
B.
Lee
,
K.
Rho
,
J. E.
Lee
, et al
2014
.
A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma
.
Nat. Genet.
46
:
371
375
.
64
Alikhan
,
M.
,
J. Y.
Song
,
A. R.
Sohani
,
J.
Moroch
,
A.
Plonquet
,
A. S.
Duffield
,
M. J.
Borowitz
,
L.
Jiang
,
C.
Bueso-Ramos
,
K.
Inamdar
, et al
2016
.
Peripheral T-cell lymphomas of follicular helper T-cell type frequently display an aberrant CD3−/dimCD4+ population by flow cytometry: an important clue to the diagnosis of a Hodgkin lymphoma mimic
.
Mod. Pathol.
29
:
1173
1182
.
65
Witalis
,
M.
,
J.
Chang
,
M. C.
Zhong
,
Y.
Bouklouch
,
V.
Panneton
,
J.
Li
,
T.
Buch
,
S. J.
Kim
,
W. S.
Kim
,
Y. H.
Ko
, et al
2020
.
Progression of AITL-like tumors in mice is driven by Tfh signature proteins and T-B cross talk
.
Blood Adv.
4
:
868
879
.
66
Cortes
,
J. R.
,
A.
Ambesi-Impiombato
,
L.
Couronné
,
S. A.
Quinn
,
C. S.
Kim
,
A. C.
da Silva Almeida
,
Z.
West
,
L.
Belver
,
M. S.
Martin
,
L.
Scourzic
, et al
2018
.
RHOA G17V induces T follicular helper cell specification and promotes lymphomagenesis
.
Cancer Cell
33
:
259
273.e7
.
67
Brezar
,
V.
,
W. J.
Tu
,
N.
Seddiki
.
2015
.
PKC-theta in regulatory and effector T-cell functions
.
Front. Immunol.
6
:
530
.
68
Kazanietz
,
M. G.
,
M. A.
Lemmon
.
2011
.
Protein kinase C regulation: C1 meets C-tail
.
Structure
19
:
144
146
.
69
Choi
,
J.
,
G.
Goh
,
T.
Walradt
,
B. S.
Hong
,
C. G.
Bunick
,
K.
Chen
,
R. D.
Bjornson
,
Y.
Maman
,
T.
Wang
,
J.
Tordoff
, et al
2015
.
Genomic landscape of cutaneous T cell lymphoma
.
Nat. Genet.
47
:
1011
1019
.
70
García-Díaz
,
N.
,
B.
Casar
,
R.
Alonso-Alonso
,
L.
Quevedo
,
M.
Rodríguez
,
F.
Ruso-Julve
,
A.
Esteve-Codina
,
M.
Gut
,
A. A.
Gru
,
M. C.
González-Vela
, et al
2022
.
PLCγ1/PKCθ downstream signaling controls cutaneous T-cell lymphoma development and progression
.
J. Invest. Dermatol.
142
:
1391
1400.e15
.
71
Kogure
,
Y.
,
T.
Kameda
,
J.
Koya
,
M.
Yoshimitsu
,
K.
Nosaka
,
J. I.
Yasunaga
,
Y.
Imaizumi
,
M.
Watanabe
,
Y.
Saito
,
Y.
Ito
, et al
2022
.
Whole-genome landscape of adult T-cell leukemia/lymphoma
.
Blood
139
:
967
982
.
72
Roche
,
M. I.
,
R. A.
Ramadas
,
B. D.
Medoff
.
2013
.
The role of CARMA1 in T cells
.
Crit. Rev. Immunol.
33
:
219
243
.
73
Cheng
,
J.
,
L. M.
Maurer
,
H.
Kang
,
P. C.
Lucas
,
L. M.
McAllister-Lucas
.
2020
.
Critical protein-protein interactions within the CARMA1-BCL10-MALT1 complex: take-home points for the cell biologist
.
Cell. Immunol.
355
:
104158
.
74
Bedsaul
,
J. R.
,
N. M.
Carter
,
K. E.
Deibel
,
S. M.
Hutcherson
,
T. A.
Jones
,
Z.
Wang
,
C.
Yang
,
Y. K.
Yang
,
J. L.
Pomerantz
.
2018
.
Mechanisms of regulated and dysregulated CARD11 signaling in adaptive immunity and disease
.
Front. Immunol.
9
:
2105
.
75
David
,
L.
,
Y.
Li
,
J.
Ma
,
E.
Garner
,
X.
Zhang
,
H.
Wu
.
2018
.
Assembly mechanism of the CARMA1-BCL10-MALT1-TRAF6 signalosome
.
Proc. Natl. Acad. Sci. USA
115
:
1499
1504
.
76
Sommer
,
K.
,
B.
Guo
,
J. L.
Pomerantz
,
A. D.
Bandaranayake
,
M. E.
Moreno-García
,
Y. L.
Ovechkina
,
D. J.
Rawlings
.
2005
.
Phosphorylation of the CARMA1 linker controls NF-κB activation
.
Immunity
23
:
561
574
.
77
da Silva Almeida
,
A. C.
,
F.
Abate
,
H.
Khiabanian
,
E.
Martinez-Escala
,
J.
Guitart
,
C. P.
Tensen
,
M. H.
Vermeer
,
R.
Rabadan
,
A.
Ferrando
,
T.
Palomero
.
2015
.
The mutational landscape of cutaneous T cell lymphoma and Sézary syndrome
.
Nat. Genet.
47
:
1465
1470
.
78
Kameda
,
T.
,
K.
Shide
,
A.
Kamiunten
,
T.
Yuki
,
M.
Sekine
,
K.
Akizuki
,
T.
Hidaka
,
Y.
Kubuki
,
M.
Sugiyama
,
D.
Morishita
,
K.
Shimoda
.
2020
.
CARD11 mutation induces oligoclonal expansion of T-cells, and accelerates ATL development in combination with HBZ
.
Blood
136
(
Suppl. 1
):
17
18
.
79
Roncagalli
,
R.
,
M.
Cucchetti
,
N.
Jarmuzynski
,
C.
Grégoire
,
E.
Bergot
,
S.
Audebert
,
E.
Baudelet
,
M. G.
Menoita
,
A.
Joachim
,
S.
Durand
, et al
2016
.
The scaffolding function of the RLTPR protein explains its essential role for CD28 co-stimulation in mouse and human T cells
.
J. Exp. Med.
213
:
2437
2457
.
80
Yonkof
,
J. R.
,
A.
Gupta
,
C. M.
Rueda
,
S.
Mangray
,
B. T.
Prince
,
H. G.
Rangarajan
,
M.
Alshahrani
,
E.
Varga
,
T. P.
Cripe
,
R. S.
Abraham
.
2020
.
A novel pathogenic variant in CARMIL2 (RLTPR) causing CARMIL2 deficiency and EBV-associated smooth muscle tumors
.
Front. Immunol.
11
:
884
.
81
Mashhoon
,
N.
,
A. J.
DeMaggio
,
V.
Tereshko
,
S. C.
Bergmeier
,
M.
Egli
,
M. F.
Hoekstra
,
J.
Kuret
.
2000
.
Crystal structure of a conformation-selective casein kinase-1 inhibitor
.
J. Biol. Chem.
275
:
20052
20060
.
82
Bidère
,
N.
,
V. N.
Ngo
,
J.
Lee
,
C.
Collins
,
L.
Zheng
,
F.
Wan
,
R. E.
Davis
,
G.
Lenz
,
D. E.
Anderson
,
D.
Arnoult
, et al
2009
.
Casein kinase 1α governs antigen-receptor-induced NF-κB activation and human lymphoma cell survival
.
Nature
458
:
92
96
.
83
Kumar
,
A.
,
E. T.
Petri
,
B.
Halmos
,
T. J.
Boggon
.
2008
.
Structure and clinical relevance of the epidermal growth factor receptor in human cancer
.
J. Clin. Oncol.
26
:
1742
1751
.
84
Gazdar
,
A. F.
,
H.
Shigematsu
,
J.
Herz
,
J. D.
Minna
.
2004
.
Mutations and addiction to EGFR: the Achilles ‘heal’ of lung cancers?
Trends Mol. Med.
10
:
481
486
.
85
Evans
,
E. J.
,
R. M.
Esnouf
,
R.
Manso-Sancho
,
R. J.
Gilbert
,
J. R.
James
,
C.
Yu
,
J. A.
Fennelly
,
C.
Vowles
,
T.
Hanke
,
B.
Walse
, et al
2005
.
Crystal structure of a soluble CD28-Fab complex
.
Nat. Immunol.
6
:
271
279
.
86
Esensten
,
J. H.
,
Y. A.
Helou
,
G.
Chopra
,
A.
Weiss
,
J. A.
Bluestone
.
2016
.
CD28 Costimulation: From Mechanism to Therapy
.
Immunity
44
:
973
988
.
87
Chen
,
L.
,
D. B.
Flies
.
2013
.
Molecular mechanisms of T cell co-stimulation and co-inhibition
. [Published erratum appears in 2013 Nat. Rev. Immunol. 13: 542.]
Nat. Rev. Immunol.
13
:
227
242
.
88
Stamper
,
C. C.
,
Y.
Zhang
,
J. F.
Tobin
,
D. V.
Erbe
,
S.
Ikemizu
,
S. J.
Davis
,
M. L.
Stahl
,
J.
Seehra
,
W. S.
Somers
,
L.
Mosyak
.
2001
.
Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses
.
Nature
410
:
608
611
.
89
Sekulic
,
A.
,
W. S.
Liang
,
W.
Tembe
,
T.
Izatt
,
S.
Kruglyak
,
J. A.
Kiefer
,
L.
Cuyugan
,
V.
Zismann
,
C.
Legendre
,
M. R.
Pittelkow
, et al
2015
.
Personalized treatment of Sézary syndrome by targeting a novel CTLA4:CD28 fusion
.
Mol. Genet. Genomic Med.
3
:
130
136
.
90
Rohr
,
J.
,
S.
Guo
,
J.
Huo
,
A.
Bouska
,
C.
Lachel
,
Y.
Li
,
P. D.
Simone
,
W.
Zhang
,
Q.
Gong
,
C.
Wang
, et al
2016
.
Recurrent activating mutations of CD28 in peripheral T-cell lymphomas
.
Leukemia
30
:
1062
1070
.
91
Sharpe
,
A. H.
,
K. E.
Pauken
.
2018
.
The diverse functions of the PD1 inhibitory pathway
.
Nat. Rev. Immunol.
18
:
153
167
.
92
Jubel
,
J. M.
,
Z. R.
Barbati
,
C.
Burger
,
D. C.
Wirtz
,
F. A.
Schildberg
.
2020
.
The role of PD-1 in acute and chronic infection
.
Front. Immunol.
11
:
487
.
93
Wartewig
,
T.
,
Z.
Kurgyis
,
S.
Keppler
,
K.
Pechloff
,
E.
Hameister
,
R.
Öllinger
,
R.
Maresch
,
T.
Buch
,
K.
Steiger
,
C.
Winter
, et al
2017
.
PD-1 is a haploinsufficient suppressor of T cell lymphomagenesis
. [Published erratum appears in 2018 Nature 553: 238.]
Nature
552
:
121
125
.
94
Park
,
J.
,
J.
Daniels
,
T.
Wartewig
,
K. G.
Ringbloom
,
M. E.
Martinez-Escala
,
S.
Choi
,
J. J.
Thomas
,
P. G.
Doukas
,
J.
Yang
,
C.
Snowden
, et al
2021
.
Integrated genomic analyses of cutaneous T-cell lymphomas reveal the molecular bases for disease heterogeneity
.
Blood
138
:
1225
1236
.
95
Ratner
,
L.
,
T. A.
Waldmann
,
M.
Janakiram
,
J. E.
Brammer
.
2018
.
Rapid progression of adult T-cell leukemia-lymphoma after PD-1 inhibitor therapy
.
N. Engl. J. Med.
378
:
1947
1948
.
96
Verstrepen
,
L.
,
K.
Verhelst
,
G.
van Loo
,
I.
Carpentier
,
S. C.
Ley
,
R.
Beyaert
.
2010
.
Expression, biological activities and mechanisms of action of A20 (TNFAIP3)
.
Biochem. Pharmacol.
80
:
2009
2020
.
97
Shembade
,
N.
,
E. W.
Harhaj
.
2012
.
Regulation of NF-κB signaling by the A20 deubiquitinase
.
Cell. Mol. Immunol.
9
:
123
130
.
98
Krikos
,
A.
,
C. D.
Laherty
,
V. M.
Dixit
.
1992
.
Transcriptional activation of the tumor necrosis factor α-inducible zinc finger protein, A20, is mediated by κB elements
.
J. Biol. Chem.
267
:
17971
17976
.
99
Braun
,
F. C.
,
P.
Grabarczyk
,
M.
Möbs
,
F. K.
Braun
,
J.
Eberle
,
M.
Beyer
,
W.
Sterry
,
F.
Busse
,
J.
Schröder
,
M.
Delin
, et al
2011
.
Tumor suppressor TNFAIP3 (A20) is frequently deleted in Sézary syndrome
.
Leukemia
25
:
1494
1501
.
100
Chen
,
C.
,
Z.
Chen
,
L.
Huang
,
L.
Zhou
,
L.
Zhu
,
S.
Liu
,
G.
Luo
,
W.
Li
,
C.
Zeng
,
Y.
Li
.
2021
.
TNFAIP3 mutation may be associated with favorable overall survival for patients with T-cell lymphoma
.
Cancer Cell Int.
21
:
490
.
101
Oeckinghaus
,
A.
,
S.
Ghosh
.
2009
.
The NF-κB family of transcription factors and its regulation
.
Cold Spring Harb. Perspect. Biol.
1
:
a000034
.
102
Huxford
,
T.
,
G.
Ghosh
.
2009
.
A structural guide to proteins of the NF-κB signaling module
.
Cold Spring Harb. Perspect. Biol.
1
:
a000075
.
103
Ghosh
,
G.
,
V. Y.
Wang
.
2021
.
Origin of the functional distinctiveness of NF-κB/p52
.
Front. Cell Dev. Biol.
9
:
764164
.
104
Nolan
,
G. P.
,
T.
Fujita
,
K.
Bhatia
,
C.
Huppi
,
H. C.
Liou
,
M. L.
Scott
,
D.
Baltimore
.
1993
.
The bcl-3 proto-oncogene encodes a nuclear I kappa B-like molecule that preferentially interacts with NF-kappa B p50 and p52 in a phosphorylation-dependent manner
.
Mol. Cell. Biol.
13
:
3557
3566
.
105
Rothwarf
,
D. M.
,
E.
Zandi
,
G.
Natoli
,
M.
Karin
.
1998
.
IKK-γ is an essential regulatory subunit of the IκB kinase complex
.
Nature
395
:
297
300
.
106
Whiteside
,
S. T.
,
A.
Israël
.
1997
.
IκB proteins: structure, function and regulation
.
Semin. Cancer Biol.
8
:
75
82
.
107
Karin
,
M.
1999
.
How NF-κB is activated: the role of the IκB kinase (IKK) complex
.
Oncogene
18
:
6867
6874
.
108
Qing
,
G.
,
Z.
Qu
,
G.
Xiao
.
2005
.
Regulation of NF-kappa B2 p100 processing by its cis-acting domain
.
J. Biol. Chem.
280
:
18
27
.
109
Jost
,
P. J.
,
J.
Ruland
.
2007
.
Aberrant NF-κB signaling in lymphoma: mechanisms, consequences, and therapeutic implications
.
Blood
109
:
2700
2707
.
110
Caprini
,
E.
,
A.
Bresin
,
C.
Cristofoletti
,
M.
Helmer Citterich
,
V.
Tocco
,
E.
Scala
,
A.
Monopoli
,
R.
Benucci
,
M. G.
Narducci
,
G.
Russo
.
2018
.
Loss of the candidate tumor suppressor ZEB1 (TCF8, ZFHX1A) in Sézary syndrome
.
Cell Death Dis.
9
:
1178
.
111
Zhang
,
Y.
,
L.
Xu
,
A.
Li
,
X.
Han
.
2019
.
The roles of ZEB1 in tumorigenic progression and epigenetic modifications
.
Biomed. Pharmacother.
110
:
400
408
.
112
Aghdassi
,
A.
,
M.
Sendler
,
A.
Guenther
,
J.
Mayerle
,
C. O.
Behn
,
C. D.
Heidecke
,
H.
Friess
,
M.
Büchler
,
M.
Evert
,
M. M.
Lerch
,
F. U.
Weiss
.
2012
.
Recruitment of histone deacetylases HDAC1 and HDAC2 by the transcriptional repressor ZEB1 downregulates E-cadherin expression in pancreatic cancer
.
Gut
61
:
439
448
.
113
Byles
,
V.
,
L.
Zhu
,
J. D.
Lovaas
,
L. K.
Chmilewski
,
J.
Wang
,
D. V.
Faller
,
Y.
Dai
.
2012
.
SIRT1 induces EMT by cooperating with EMT transcription factors and enhances prostate cancer cell migration and metastasis
.
Oncogene
31
:
4619
4629
.
114
Lindner
,
P.
,
S.
Paul
,
M.
Eckstein
,
C.
Hampel
,
J. K.
Muenzner
,
K.
Erlenbach-Wuensch
,
H. P.
Ahmed
,
V.
Mahadevan
,
T.
Brabletz
,
A.
Hartmann
, et al
2020
.
EMT transcription factor ZEB1 alters the epigenetic landscape of colorectal cancer cells
.
Cell Death Dis.
11
:
147
.
115
Nakahata
,
S.
,
S.
Yamazaki
,
H.
Nakauchi
,
K.
Morishita
.
2010
.
Downregulation of ZEB1 and overexpression of Smad7 contribute to resistance to TGF-β1-mediated growth suppression in adult T-cell leukemia/lymphoma
. [Published erratum appears in 2010 Oncogene 30: 2900.]
Oncogene
29
:
4157
4169
.
116
Williams
,
T. M.
,
D.
Moolten
,
J.
Burlein
,
J.
Romano
,
R.
Bhaerman
,
A.
Godillot
,
M.
Mellon
,
F. J.
Rauscher
III
,
J. A.
Kant
.
1991
.
Identification of a zinc finger protein that inhibits IL-2 gene expression
.
Science
254
:
1791
1794
.
117
Drápela
,
S.
,
J.
Bouchal
,
M. K.
Jolly
,
Z.
Culig
,
K.
Souček
.
2020
.
ZEB1: a critical regulator of cell plasticity, DNA damage response, and therapy resistance
.
Front. Mol. Biosci.
7
:
36
.
118
Qian
,
Y.
,
G.
Arellano
,
I.
Ifergan
,
J.
Lin
,
C.
Snowden
,
T.
Kim
,
J. J.
Thomas
,
C.
Law
,
T.
Guan
,
R. D.
Balabanov
, et al
2021
.
ZEB1 promotes pathogenic Th1 and Th17 cell differentiation in multiple sclerosis
.
Cell Rep.
36
:
109602
.
119
Guenova
,
E.
,
R.
Watanabe
,
J. E.
Teague
,
J. A.
Desimone
,
Y.
Jiang
,
M.
Dowlatshahi
,
C.
Schlapbach
,
K.
Schaekel
,
A. H.
Rook
,
M.
Tawa
, et al
2013
.
TH2 cytokines from malignant cells suppress TH1 responses and enforce a global TH2 bias in leukemic cutaneous T-cell lymphoma
.
Clin. Cancer Res.
19
:
3755
3763
.
120
Grumont
,
R. J.
,
S.
Gerondakis
.
2000
.
Rel induces interferon regulatory factor 4 (IRF-4) expression in lymphocytes: modulation of interferon-regulated gene expression by Rel/nuclear factor κB
.
J. Exp. Med.
191
:
1281
1292
.
121
Tominaga
,
N.
,
K.
Ohkusu-Tsukada
,
H.
Udono
,
R.
Abe
,
T.
Matsuyama
,
K.
Yui
.
2003
.
Development of Th1 and not Th2 immune responses in mice lacking IFN-regulatory factor-4
.
Int. Immunol.
15
:
1
10
.
122
Mahnke
,
J.
,
V.
Schumacher
,
S.
Ahrens
,
N.
Käding
,
L. M.
Feldhoff
,
M.
Huber
,
J.
Rupp
,
F.
Raczkowski
,
H. W.
Mittrücker
.
2016
.
Interferon regulatory factor 4 controls TH1 cell effector function and metabolism
.
Sci. Rep.
6
:
35521
.
123
Man
,
K.
,
M.
Miasari
,
W.
Shi
,
A.
Xin
,
D. C.
Henstridge
,
S.
Preston
,
M.
Pellegrini
,
G. T.
Belz
,
G. K.
Smyth
,
M. A.
Febbraio
, et al
2013
.
The transcription factor IRF4 is essential for TCR affinity-mediated metabolic programming and clonal expansion of T cells
. [Published erratum appears in 2014 Nat. Immunol. 15: 894.]
Nat. Immunol.
14
:
1155
1165
.
124
Cherian
,
M. A.
,
S.
Olson
,
H.
Sundaramoorthi
,
K.
Cates
,
X.
Cheng
,
J.
Harding
,
A.
Martens
,
G. A.
Challen
,
M.
Tyagi
,
L.
Ratner
,
D.
Rauch
.
2018
.
An activating mutation of interferon regulatory factor 4 (IRF4) in adult T-cell leukemia
.
J. Biol. Chem.
293
:
6844
6858
.
125
Roychoudhuri
,
R.
,
D.
Clever
,
P.
Li
,
Y.
Wakabayashi
,
K. M.
Quinn
,
C. A.
Klebanoff
,
Y.
Ji
,
M.
Sukumar
,
R. L.
Eil
,
Z.
Yu
, et al
2016
.
BACH2 regulates CD8+ T cell differentiation by controlling access of AP-1 factors to enhancers
.
Nat. Immunol.
17
:
851
860
.
126
Daniels
,
J.
,
J.
Choi
.
2021
.
BACH2 is a putative T-cell lymphoma tumor suppressor that may play a role in product-derived CAR T-cell lymphomas
.
Blood
138
:
2731
2733
.
127
Micklethwaite
,
K. P.
,
K.
Gowrishankar
,
B. S.
Gloss
,
Z.
Li
,
J. A.
Street
,
L.
Moezzi
,
M. A.
Mach
,
G.
Sutrave
,
L. E.
Clancy
,
D. C.
Bishop
, et al
2021
.
Investigation of product-derived lymphoma following infusion of piggyBac-modified CD19 chimeric antigen receptor T cells
.
Blood
138
:
1391
1405
.
128
Ou
,
J.
,
L. J.
Zhu
.
2019
.
trackViewer: a Bioconductor package for interactive and integrative visualization of multi-omics data
.
Nat. Methods
16
:
453
454
.