Although rs763361, which causes a nonsynonymous glycine-to-serine mutation at residue 307 (G307S mutation) of the DNAX accessory molecule-1 (DNAM-1) immunoreceptor, is a single-nucleotide polymorphism associated with autoimmune disease susceptibility, little is known about how the single-nucleotide polymorphism is involved in pathogenesis. In this study, we established human CD4+ T cell transfectants stably expressing wild-type (WT) or G307S DNAM-1 and showed that the costimulatory signal from G307S DNAM-1 induced greater proinflammatory cytokine production and cell proliferation than that from wild-type DNAM-1. The G307S mutation also enhanced the recruitment of the tyrosine kinase Lck and augmented p-Tyr322 of DNAM-1. We also established a mouse myelin Ag–specific CD4+ T cell transfectant stably expressing the chimeric DNAM-1 (chDNAM-1) consisting of the extracellular, transmembrane, and a part of intracellular regions of mouse DNAM-1 (residues 1–285) fused with the part of the intracellular region (residues 286–336) of human WT or G307S chDNAM-1. Adoptive transfer of the mouse T cell transfectant expressing the G307S chDNAM-1 into mice exacerbated experimental autoimmune encephalomyelitis compared with the transfer of cells expressing the WT chDNAM-1. These findings suggest that rs763361 is a gain-of-function mutation that enhances DNAM-1–mediated costimulatory signaling for proinflammatory responses.

This work was supported by the Ministry of Education, Culture, Sports, Science and Technology Grants 18H05022 and 21H04836 (to A.S.), 21H02708 (to K.S.), and 22J11500 (to R.M.), and by Japan Science and Technology Agency SPRING Grant JPMJSP2124 (to R.M.). The sponsors had no control over the interpretation, writing, or publication of this work.

The online version of this article contains supplemental material.

This content is only available via PDF.

Supplementary data